Table of Contents Author Guidelines Submit a Manuscript
AIDS Research and Treatment
Volume 2011, Article ID 154945, 13 pages
http://dx.doi.org/10.1155/2011/154945
Review Article

The Use of Bioinformatics for Studying HIV Evolutionary and Epidemiological History in South America

1Laboratório de Imunologia e Aids, Instituto Oswaldo Cruz, 21040-360 Rio de Janeiro, RJ, Brazil
2Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
3Departamento de Genética, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
4Programa de Genética, Instituto Nacional de Câncer, 20231-050 Rio de Janeiro, RJ, Brazil

Received 27 May 2011; Accepted 19 August 2011

Academic Editor: Christina Ramirez Kitchen

Copyright © 2011 Gonzalo Bello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Robertson, J. P. Anderson, J. A. Bradac et al., “HIV-1 nomenclature proposal,” Science, vol. 288, no. 5463, pp. 55–57, 2000. View at Google Scholar · View at Scopus
  2. J. C. Plantier, M. Leoz, J. E. Dickerson et al., “A new human immunodeficiency virus derived from gorillas,” Nature Medicine, vol. 15, no. 8, pp. 871–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Tebit and E. J. Arts, “Tracking a century of global expansion and evolution of HIV to drive understanding and to combat disease,” The Lancet Infectious Diseases, vol. 11, no. 1, pp. 45–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Eholié and X. Anglaret, “Commentary: decline of HIV-2 prevalence in West Africa: good news or bad news?” International Journal of Epidemiology, vol. 35, no. 5, pp. 1329–1330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. Burke, “Recombination in HIV: an important viral evolutionary strategy,” Emerging Infectious Diseases, vol. 3, no. 3, pp. 253–259, 1997. View at Google Scholar · View at Scopus
  6. J. Hemelaar, E. Gouws, P. D. Ghys, and S. Osmanov, “Global trends in molecular epidemiology of HIV-1 during 2000–2007,” AIDS, vol. 25, no. 5, pp. 679–689, 2011. View at Publisher · View at Google Scholar
  7. V. Bongertz, D. C. Bou-Habib, L. F. M. Brígido et al., “HIV-1 diversity in Brazil: genetic, biologic, and immunologic characterization of HIV-1 strains in three potential HIV vaccine evaluation sites,” Journal of Acquired Immune Deficiency Syndromes, vol. 23, no. 2, pp. 184–193, 2000. View at Google Scholar
  8. J. C. Couto-Fernandez, M. G. Morgado, V. Bongertz et al., “HIV-1 subtyping in Salvador, Bahia, Brazil: a city with African sociodemographic characteristics,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 22, no. 3, pp. 288–293, 1999. View at Google Scholar · View at Scopus
  9. M. G. Morgado, E. C. Sabino, E. G. Shpaer et al., “V3 region polymorphisms in HIV-1 from Brazil: prevalence of subtype B strains divergent from North American/European prototype and detection of subtype F,” AIDS Research and Human Retroviruses, vol. 10, no. 5, pp. 569–576, 1994. View at Google Scholar · View at Scopus
  10. E. C. Sabino, E. G. Shpaer, M. G. Morgado et al., “Identification of human immunodeficiency virus type 1 envelope genes recombinant between subtypes B and F in two epidemiologically linked individuals from Brazil,” Journal of Virology, vol. 68, no. 10, pp. 6340–6346, 1994. View at Google Scholar · View at Scopus
  11. M. A. Soares, T. de Oliveira, R. M. Brindeiro et al., “A specific subtype C of human immunodeficiency virus type 1 circulates in Brazil,” AIDS, vol. 17, no. 1, pp. 11–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Thomson, M. L. Villahermosa, E. Vázquez-De-Parga et al., “Widespread circulation of a B/F intersubtype recombinant form among HIV-1-infected individuals in Buenos Aires, Argentina,” AIDS, vol. 14, no. 7, pp. 897–899, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. F. Quarleri, A. Rubio, M. Carobene et al., “HIV type 1 BF recombinant strains exhibit different pol gene mosaic patternsdscriptive analysis from 284 patients under treatment failure,” AIDS Research and Human Retroviruses, vol. 20, no. 10, pp. 1100–1107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Dilernia, A. M. Gomez, L. Lourtau et al., “HIV type 1 genetic diversity surveillance among newly diagnosed individuals from 2003 to 2005 in Buenos Aires, Argentina,” AIDS Research and Human Retroviruses, vol. 23, no. 10, pp. 1201–1207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Ruchansky, C. Casado, J. C. Russi, J. R. Arbiza, and C. Lopez-Galindez, “Identification of a new HIV Type 1 circulating recombinant form (CRF38-BF1) in Uruguay,” AIDS Research and Human Retroviruses, vol. 25, no. 3, pp. 351–356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Hierholzer, S. Montano, M. Hoelscher et al., “Molecular epidemiology of HIV type 1 in Ecuador, Peru, Bolivia, Uruguay, and Argentina,” AIDS Research and Human Retroviruses, vol. 18, no. 18, pp. 1339–1350, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. J. K. Carr, M. Avila, M. G. Carrillo et al., “Diverse BF recombinants have spread widely since the introduction of hiv-1 into South America,” AIDS, vol. 15, no. 15, pp. F41–F47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Ríos, E. Belgado, L. Pérez-Álvarez et al., “Antiretroviral drug resistance and phylogenetic diversity of HIV-1 in Chile,” Journal of Medical Virology, vol. 79, no. 6, pp. 647–656, 2007. View at Publisher · View at Google Scholar
  19. N. Aguayo, V. A. Laguna-Torres, M. Villafane et al., “Epidemiological and molecular characteristics of HIV-1 infection among female commercial sex workers, men who have sex with men and people living with AIDS in Paraguay,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 41, no. 3, pp. 225–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. De Sá Filho, M. C. A. Sucupira, M. M. Casiero, E. C. Sabino, R. S. Diaz, and L. M. Janini, “Identification of two HIV type 1 circulating recombinant forms in Brazil,” AIDS Research and Human Retroviruses, vol. 22, no. 1, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. L. Guimarães, W. A. Eyer-Silva, J. C. Couto-Fernandez, and M. G. Morgado, “Identification of two new CRF_BF in Rio de Janeiro State, Brazil,” AIDS, vol. 22, no. 3, pp. 433–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. S. Sanabani, E. R. De Souza Pastena, W. K. Neto, V. P. Martinez, and E. C. Sabino, “Characterization and frequency of a newly identified HIV-1 BF1 intersubtype circulating recombinant form in São Paulo, Brazil,” Virology Journal, vol. 7, article 74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Delgado, M. Ríos, J. Fernández, L. Pérez-Álvarez, R. Nájera, and M. M. Thomson, “Identification of a new HIV type 1 BF intersubtype circulating recombinant form (CRF44-BF) in Chile,” AIDS Research and Human Retroviruses, vol. 26, no. 7, pp. 821–826, 2010. View at Publisher · View at Google Scholar
  24. A. F. Santos, T. M. Sousa, E. A. J. M. Soares et al., “Characterization of a new circulating recombinant form comprising HIV-1 subtypes C and B in southern Brazil,” AIDS, vol. 20, no. 16, pp. 2011–2019, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. W. A. Eyer-Silva and M. G. Morgado, “Autochthonous horizontal transmission of a CRF02_AG strain revealed by a human immunodeficiency virus type 1 diversity survey in a small city in inner state of Rio de Janeiro, Southeast Brazil,” Memorias do Instituto Oswaldo Cruz, vol. 102, no. 7, pp. 809–815, 2007. View at Google Scholar · View at Scopus
  26. L. F. A. MacHado, M. O. G. Ishak, A. C. R. Vallinoto et al., “Molecular epidemiology of HIV type 1 in Northern Brazil: identification of subtypes C and D and the introduction of CRF02-AG in the amazon region of Brazil,” AIDS Research and Human Retroviruses, vol. 25, no. 10, pp. 961–966, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Couto-Fernandez, W. A. Eyer-Silva, M. L. Guimarães et al., “Phylogenetic analysis of Brazilian HIV type 1 subtype D strains: tracing the origin of this subtype in Brazil,” AIDS Research and Human Retroviruses, vol. 22, no. 2, pp. 207–211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Gómez-Carrillo, J. F. Quarleri, A. E. Rubio et al., “Drug resistance testing provides evidence of the globalization of HIV type 1: a new circulating recombinant form,” AIDS Research and Human Retroviruses, vol. 20, no. 8, pp. 885–888, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Rambaut, D. Posada, K. A. Crandall, and E. C. Holmes, “The causes and consequences of HIV evolution,” Nature Reviews Genetics, vol. 5, no. 1, pp. 52–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. B. H. Hahn, G. M. Shaw, K. M. De Cock, and P. M. Sharp, “AIDS as a zoonosis: scientific and public health implications,” Science, vol. 287, no. 5453, pp. 607–614, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. B. F. Keele, F. Van Heuverswyn, Y. Li et al., “Chimpanzee reservoirs of pandemic and nonpandemic HIV-1,” Science, vol. 313, no. 5786, pp. 523–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. P. Huelsenbeck, B. Larget, R. E. Miller, and F. Ronquist, “Potential applications and pitfalls of Bayesian inference of phylogeny,” Systematic Biology, vol. 51, no. 5, pp. 673–688, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Yang, “Statistical properties of the maximum likelihood method of phylogenetic estimation and comparison with distance matrix methods,” Systematic Biology, vol. 43, no. 3, pp. 329–342, 1994. View at Google Scholar · View at Scopus
  34. J. P. Huelsenbeck, “Performance of phylogenetic methods in simulation,” Systematic Biology, vol. 44, no. 1, pp. 17–48, 1995. View at Google Scholar · View at Scopus
  35. B. Mau, M. A. Newton, and B. Larget, “Bayesian phylogenetic inference via Markov chain Monte Carlo methods,” Biometrics, vol. 55, no. 1, pp. 1–12, 1999. View at Google Scholar · View at Scopus
  36. S. Guindon and O. Gascuel, “A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood,” Systematic Biology, vol. 52, no. 5, pp. 696–704, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Stamatakis, T. Ludwig, and H. Meier, “RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees,” Bioinformatics, vol. 21, no. 4, pp. 456–463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. J. Brauer, M. T. Holder, L. A. Dries, D. J. Zwickl, P. O. Lewis, and D. M. Hillis, “Genetic algorithms and parallel processing in maximum-likelihood phylogeny inference,” Molecular Biology and Evolution, vol. 19, no. 10, pp. 1717–1726, 2002. View at Google Scholar · View at Scopus
  39. J. Felsenstein, “Confidence-limits on phylogenies with a molecular clock,” Systematic Zoology, vol. 34, pp. 152–161, 1985. View at Google Scholar
  40. F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian phylogenetic inference under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. P. Huelsenbeck, F. Ronquist, R. Nielsen, and J. P. Bollback, “Bayesian inference of phylogeny and its impact on evolutionary biology,” Science, vol. 294, no. 5550, pp. 2310–2314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. Ray S. Simplot v2.5.0, http://www.hopkinsmedicine.org/.
  43. M. O. Salminen, J. K. Carr, D. S. Burke, and F. E. McCutchan, “Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning,” AIDS Research and Human Retroviruses, vol. 11, no. 11, pp. 1423–1425, 1995. View at Google Scholar · View at Scopus
  44. S. L. Kosakovsky Pond, D. Posada, M. B. Gravenor, C. H. Woelk, and S. D. W. Frost, “GARD: a genetic algorithm for recombination detection,” Bioinformatics, vol. 22, no. 24, pp. 3096–3098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. M. Thomson and R. Nájera, “Molecular epidemiology of HIV-1 variants in the global aids pandemic: an update,” AIDS Reviews, vol. 7, no. 4, pp. 210–224, 2005. View at Google Scholar · View at Scopus
  46. D. Paraskevis, E. Magiorkinis, G. Magiorkinis et al., “Increasing prevalence of HIV-1 subtype a in Greece: estimating epidemic history and origin,” Journal of Infectious Diseases, vol. 196, no. 8, pp. 1167–1176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Paraskevis, O. Pybus, G. Magiorkinis et al., “Tracing the HIV-1 subtype B mobility in Europe: a phylogeographic approach,” Retrovirology, vol. 6, article 49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Salemi, T. de Oliveira, M. Ciccozzi, G. Rezza, and M. M. Goodenow, “High-resolution molecular epidemiology and evolutionary history of HIV-1 subtypes in Albania,” PLoS One, vol. 3, no. 1, Article ID e1390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Salemi, M. M. Goodenow, S. Montieri et al., “The HIV type 1 epidemic in Bulgaria involves multiple subtypes and is sustained by continuous viral inflow from West and East European countries,” AIDS Research and Human Retroviruses, vol. 24, no. 6, pp. 771–779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. E. C. Holmes, “The phylogeography of human viruses,” Molecular Ecology, vol. 13, no. 4, pp. 745–756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Slatkin and W. P. Maddison, “A cladistic measure of gene flow inferred from the phylogenies of alleles,” Genetics, vol. 123, no. 3, pp. 603–613, 1989. View at Google Scholar · View at Scopus
  52. A. R. Templeton, “Statistical phylogeography: methods of evaluating and minimizing inference errors,” Molecular Ecology, vol. 13, no. 4, pp. 789–809, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Parker, A. Rambaut, and O. G. Pybus, “Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty,” Infection, Genetics and Evolution, vol. 8, no. 3, pp. 239–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Lemey, A. Rambaut, A. J. Drummond, and M. A. Suchard, “Bayesian phylogeography finds its roots,” PLoS Computational Biology, vol. 5, no. 9, Article ID e1000520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Lemey, A. Rambaut, J. J. Welch, and M. A. Suchard, “Phylogeography takes a relaxed random walk in continuous space and time,” Molecular Biology and Evolution, vol. 27, no. 8, pp. 1877–1885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Kumar, “Molecular clocks: four decades of evolution,” Nature Reviews Genetics, vol. 6, no. 8, pp. 654–662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Rambaut, “Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies,” Bioinformatics, vol. 16, no. 4, pp. 395–399, 2000. View at Google Scholar · View at Scopus
  58. A. J. Drummond, O. G. Pybus, A. Rambaut, R. Forsberg, and A. G. Rodrigo, “Measurably evolving populations,” Trends in Ecology and Evolution, vol. 18, no. 9, pp. 481–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. J. Drummond, S. Y. Ho, M. J. Phillips, and A. Rambaut, “Relaxed phylogenetics and dating with confidence,” PLoS biology, vol. 4, no. 5, article e88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Kishino, J. L. Thorne, and W. J. Bruno, “Performance of a divergence time estimation method under a probabilistic model of rate evolution,” Molecular Biology and Evolution, vol. 18, no. 3, pp. 352–361, 2001. View at Google Scholar · View at Scopus
  61. M. J. Sanderson, “A nonparametric approach to estimating divergence times in the absence of rate constancy,” Molecular Biology and Evolution, vol. 14, no. 12, pp. 1218–1231, 1997. View at Google Scholar · View at Scopus
  62. J. L. Thorne, H. Kishino, and I. S. Painter, “Estimating the rate of evolution of the rate of molecular evolution,” Molecular Biology and Evolution, vol. 15, no. 12, pp. 1647–1657, 1998. View at Google Scholar · View at Scopus
  63. A. D. Yoder and Z. Yang, “Estimation of primate speciation dates using local molecular clocks,” Molecular Biology and Evolution, vol. 17, no. 7, pp. 1081–1090, 2000. View at Google Scholar · View at Scopus
  64. L. Bromham and D. Penny, “The modern molecular clock,” Nature Reviews Genetics, vol. 4, no. 3, pp. 216–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. A. D. Yoder and Z. Yang, “Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context,” Molecular Ecology, vol. 13, no. 4, pp. 757–773, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. M. J. Sanderson, “Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach,” Molecular Biology and Evolution, vol. 19, no. 1, pp. 101–109, 2002. View at Google Scholar · View at Scopus
  67. B. Rannala and Z. Yang, “Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference,” Journal of Molecular Evolution, vol. 43, no. 3, pp. 304–311, 1996. View at Google Scholar · View at Scopus
  68. P. Lemey, A. Rambaut, and O. G. Pybus, “HIV evolutionary dynamics within and among hosts,” AIDS Reviews, vol. 8, no. 3, pp. 125–140, 2006. View at Google Scholar · View at Scopus
  69. B. Korber, M. Muldoon, J. Theiler et al., “Timing the ancestor of the HIV-1 pandemic strains,” Science, vol. 288, no. 5472, pp. 1789–1796, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Lemey, O. G. Pybus, W. Bin, N. K. Saksena, M. Salemi, and A. M. Vandamme, “Tracing the origin and history of the HIV-2 epidemic,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6588–6592, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Worobey, M. Gemmel, D. E. Teuwen et al., “Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960,” Nature, vol. 455, no. 7213, pp. 661–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. J. F. C. Kingman, “On the genealogy of large populations,” Journal of Applied Probability, vol. 19, pp. 27–43, 1982. View at Google Scholar
  73. R. C. Griffiths and S. Tavaré, “Sampling theory for neutral alleles in a varying environment,” Philosophical transactions of the Royal Society of London. Series B, vol. 344, no. 1310, pp. 403–410, 1994. View at Google Scholar · View at Scopus
  74. A. J. Drummond, A. Rambaut, B. Shapiro, and O. G. Pybus, “Bayesian coalescent inference of past population dynamics from molecular sequences,” Molecular Biology and Evolution, vol. 22, no. 5, pp. 1185–1192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. O. G. Pybus, A. Rambaut, and P. H. Harvey, “An integrated framework for the inference of viral population history from reconstructed genealogies,” Genetics, vol. 155, no. 3, pp. 1429–1437, 2000. View at Google Scholar · View at Scopus
  76. K. Strimmer and O. G. Pybus, “Exploring the demographic history of DNA sequences using the generalized skyline plot,” Molecular Biology and Evolution, vol. 18, no. 12, pp. 2298–2305, 2001. View at Google Scholar · View at Scopus
  77. O. G. Pybus, E. C. Holmes, and P. H. Harvey, “The mid-depth method and HIV-1: a practical approach for testing hypotheses of viral epidemic history,” Molecular Biology and Evolution, vol. 16, no. 7, pp. 953–959, 1999. View at Google Scholar · View at Scopus
  78. A. J. Drummond, G. K. Nicholls, A. G. Rodrigo, and W. Solomon, “Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data,” Genetics, vol. 161, no. 3, pp. 1307–1320, 2002. View at Google Scholar · View at Scopus
  79. V. N. Minin, E. W. Bloomquist, and M. A. Suchard, “Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1459–1471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. A. J. Drummond and A. Rambaut, “BEAST: Bayesian evolutionary analysis by sampling trees,” BMC Evolutionary Biology, vol. 7, no. 1, article 214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Heled and A. J. Drummond, “Bayesian inference of population size history from multiple loci,” BMC Evolutionary Biology, vol. 8, no. 1, article 289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. M. T. P. Gilbert, A. Rambaut, G. Wlasiuk, T. J. Spira, A. E. Pitchenik, and M. Worobey, “The emergence of HIV/AIDS in the Americas and beyond,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18566–18570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. K. E. Potts, M. L. Kalish, T. Lott et al., “Genetic heterogeneity of the V3 region of the HIV-1 envelope glycoprotein in Brazil. Brazilian Collaborative AIDS Research Group,” AIDS, vol. 7, pp. 1191–1197, 1993. View at Google Scholar
  84. E. Leal and F. E. Villanova, “Diversity of HIV-1 subtype B: implications to the origin of BF recombinants,” PLoS One, vol. 5, no. 7, Article ID e11833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. D. T. Covas, T. A. Bíscaro, S. Kashima, G. Duarte, and A. A. Machado, “High frequency of the GWG (Pro Trp) envelope variant of HIV-1 in Southeast Brazil,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 19, no. 1, pp. 74–79, 1998. View at Google Scholar
  86. M. G. Morgado, M. L. Guimarães, I. Neves Júnior et al., “Molecular epidemiology of HIV in Brazil: polymorphism of the antigenically distinct HIV-1 B subtype strains. The Hospital Evandro Chagas AIDS Clinical Research Group,” Memórias do Instituto Oswaldo Cruz, vol. 93, no. 3, pp. 383–386, 1998. View at Google Scholar · View at Scopus
  87. G. Bello, W. A. Eyer-Silva, J. C. Couto-Fernandez et al., “Demographic history of HIV-1 subtypes B and F in Brazil,” Infection, Genetics and Evolution, vol. 7, no. 2, pp. 263–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. M. E. Pinto, C. G. Schrago, A. B. Miranda, and C. A. M. Russo, “A molecular study on the evolution of a subtype B variant frequently found in Brazil,” Genetics and Molecular Research, vol. 7, no. 4, pp. 1031–1044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. R. S. Diaz, E. Leal, S. Sanabani et al., “Selective regimes and evolutionary rates of HIV-1 subtype B V3 variants in the Brazilian epidemic,” Virology, vol. 381, no. 2, pp. 184–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. P. C. Aulicino, G. Bello, C. Rocco et al., “Description of the first full-length HIV type 1 subtype F1 strain in Argentina: implications for the origin and dispersion of this subtype in South America,” AIDS Research and Human Retroviruses, vol. 23, no. 10, pp. 1176–1182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. M. L. Guimarães, A. C. P. Vicente, K. Otsuki et al., “Close phylogenetic relationship between Angolan and Romanian HIV-1 subtype F1 isolates,” Retrovirology, vol. 6, article 39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. D. A. Dilernia, L. R. Jones, M. A. Pando et al., “Analysis of HIV type 1 BF recombinant sequences from south america dates the origin of CRF12-BF to a recombination event in the 1970s,” AIDS Research and Human Retroviruses, vol. 27, no. 5, pp. 569–578, 2011. View at Publisher · View at Google Scholar
  93. S. R. Mehta, J. O. Wertheim, W. Delport et al., “Using phylogeography to characterize the origins of the HIV-1 subtype F epidemic in Romania,” Infection, Genetics and Evolution, vol. 11, no. 5, pp. 975–979, 2011. View at Publisher · View at Google Scholar
  94. M. Gomez Carrillo, M. Avila, J. Hierholzer et al., “Mother-to-child HIV type 1 transmission in Argentina: BF recombinants have predominated in infected children since the mid-1980s,” AIDS Research and Human Retroviruses, vol. 18, no. 7, pp. 477–483, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. P. C. Aulicino, E. C. Holmes, C. Rocco, A. Mangano, and L. Sen, “Extremely rapid spread of human immunodeficiency virus type 1 BF recombinants in Argentina,” Journal of Virology, vol. 81, no. 1, pp. 427–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Bello, P. C. Aulicino, D. Ruchansky et al., “Phylodynamics of HIV-1 circulating recombinant forms 12_BF and 38_BF in Argentina and Uruguay,” Retrovirology, vol. 7, article 22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. N. Ristic, J. Zukurov, W. Alkmim, R. S. Diaz, L. M. Janini, and M. P.S. Chin, “Analysis of the origin and evolutionary history of HIV-1 CRF28_BF and CRF29_BF reveals a decreasing prevalence in the AIDS epidemic of Brazil,” PLoS One, vol. 6, no. 3, Article ID e17485, 2011. View at Publisher · View at Google Scholar
  98. G. Bello, C. P. B. Passaes, M. L. Guimarães et al., “Origin and evolutionary history of HIV-1 subtype C in Brazil,” AIDS, vol. 22, no. 15, pp. 1993–2000, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Fontella, M. A. Soares, and C. G. Schrago, “On the origin of HIV-1 subtype C in South America,” AIDS, vol. 22, no. 15, pp. 2001–2011, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. T. de Oliveira, D. Pillay, and R. J. Gifford, “The HIV-1 subtype C epidemic in South America is linked to the United Kingdom,” PLoS One, vol. 5, no. 2, Article ID e9311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. N. M.C. Véras, R. R. Gray, L. F.M. Brígido, R. Rodrigues, and M. Salemi, “High-resolution phylogenetics and phylogeography of human immunodeficiency virus type 1 subtype C epidemic in South America,” Journal of General Virology, vol. 92, no. 7, pp. 1698–1709, 2011. View at Publisher · View at Google Scholar
  102. L. R. Jones, D. A. Dilernia, J. M. Manrique, F. Moretti, H. Salomón, and M. Gomez-Carrillo, “In-depth analysis of the origins of HIV type 1 subtype C in South America,” AIDS Research and Human Retroviruses, vol. 25, no. 10, pp. 951–959, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. L. F. D. M. Brigido, “On the origin of South America HIV-1 C epidemic,” AIDS, vol. 23, no. 4, pp. 543–544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Fontella, M. A. Soares, and C. G. Schrago, “The origin of South American HIV-1 subtype C: lack of evidence for a Mozambican ancestry,” AIDS, vol. 23, no. 14, pp. 1926–1928, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Salemi, T. de Oliveira, M. A. Soares et al., “Different epidemic potentials of the HIV-1B and C subtypes,” Journal of Molecular Evolution, vol. 60, no. 5, pp. 598–605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. A. F. Santos, C. G. Schrago, A. M. B. Martinez et al., “Epidemiologic and evolutionary trends of HIV-1 CRF31_BC-related strains in southern Brazil,” Journal of Acquired Immune Deficiency Syndromes, vol. 45, no. 3, pp. 328–333, 2007. View at Publisher · View at Google Scholar
  107. C. P. B. Passaes, G. Bello, R. S. Lorete et al., “Genetic characterization of HIV-1 BC recombinants and evolutionary history of the CRF31_BC in Southern Brazil,” Infection, Genetics and Evolution, vol. 9, no. 4, pp. 474–482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. B. Korber, J. Theiler, and S. Wolinsky, “Limitations of a molecular clock applied to considerations of the origin of HIV-1,” Science, vol. 280, no. 5371, pp. 1868–1871, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. T. K. Seo, J. L. Thorne, M. Hasegawa, and H. Kishino, “A viral sampling design for testing the molecular clock and for estimating evolutionary rates and divergence times,” Bioinformatics, vol. 18, no. 1, pp. 115–123, 2002. View at Google Scholar · View at Scopus
  110. G. Bello, M. L. Guimarães, S. L. Chequer-Fernandez et al., “Increasing genetic distance to HIV-1 subtype B and F1 consensus sequences in the Brazilian epidemic: a challenge for vaccine strategies based on central immunogens?” Infection, Genetics and Evolution, vol. 7, no. 5, pp. 594–599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Bello, M. L. Guimarães, C. P.B. Passaes, S. E.M. Almeida, V. G. Veloso, and M. G. Morgado, “Short communication: evidences of recent decline in the expansion rate of the HIV type 1 subtype C and CRF31-BC epidemics in southern Brazil,” AIDS Research and Human Retroviruses, vol. 25, no. 11, pp. 1065–1069, 2009. View at Publisher · View at Google Scholar
  112. Brazilian Ministry of Health. AIDS Epidemiological Bulletin [in Portuguese], November 2007.
  113. K. E. Robbins, P. Lemey, O. G. Pybus et al., “U.S. human immunodeficiency virus type 1 epidemic: date of origin, population history, and characterization of early strains,” Journal of Virology, vol. 77, no. 11, pp. 6359–6366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Hué, D. Pillay, J. P. Clewley, and O. G. Pybus, “Genetic analysis reveals the complex structure of HIV-1 transmission within defined risk groups,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 12, pp. 4425–4429, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. P. R. Walker, O. G. Pybus, A. Rambaut, and E. C. Holmes, “Comparative population dynamics of HIV-1 subtypes B and C: subtype-specific differences in patterns of epidemic growth,” Infection, Genetics and Evolution, vol. 5, no. 3, pp. 199–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. G. Zehender, E. Ebranati, A. Lai et al., “Population dynamics of HIV-1 subtype B in a cohort of men-having-sex-with- men in Rome, Italy,” Journal of Acquired Immune Deficiency Syndromes, vol. 55, no. 2, pp. 156–160, 2010. View at Publisher · View at Google Scholar
  117. H. F. Njai, Y. Gali, G. Vanham et al., “The predominance of Human Immunodeficiency Virus type I (HIV-1) circulating recombinant form 02 (CRF02_AG) in West Central Africa may be related to its replicative fitness,” Retrovirology, vol. 3, article 40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. R. M. Brindeiro, R. S. Diaz, E. C. Sabino et al., “Brazilian network for HIV drug resistance surveillance (HIV-BResNet): a survey of chronically infected individuals,” AIDS, vol. 17, no. 7, pp. 1063–1069, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. L. F. D. M. Brígido, H. M. Franco, R. M. Custódio et al., “Molecular characteristics of HIV type 1 circulating in São Paulo, Brazil,” AIDS Research and Human Retroviruses, vol. 21, no. 7, pp. 673–682, 2005. View at Publisher · View at Google Scholar
  120. M. L. Guimarães, J. C. Couto-Fernandez, W. D. A. Eyer-Silva, S. L. M. Teixeira, S. L. Chequer-Fernandez, and M. G. Morgado, “Analysis of HIV-1 BF pr/rt recombinant strains from Rio de Janeiro/Brazil reveals multiple unrelated mosaic structures,” Infection, Genetics and Evolution, vol. 10, no. 7, pp. 1094–1100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. P. C. Aulicino, G. Bello, M. L. Guimaraes et al., “Longitudinal analysis of HIV-1 BF1 recombinant strains in vertically infected children from Argentina reveals a decrease in CRF12_BF pol gene mosaic patterns and high diversity of BF unique recombinant forms,” Infection, Genetics and Evolution, vol. 11, no. 2, pp. 349–357, 2011. View at Publisher · View at Google Scholar
  122. D. J. De Sa-Filho, M. D. S. Soares, V. Candido et al., “HIV type 1 pol gene diversity and antiretroviral drug resistance mutations in Santos, Brazil,” AIDS Research and Human Retroviruses, vol. 24, no. 3, pp. 347–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. L. F. M. Brígido, C. C. Nunes, C. M. Oliveira et al., “HIV type 1 subtype C and CB pol recombinants prevail at the cities with the highest AIDS prevalence rate in Brazil,” AIDS Research and Human Retroviruses, vol. 23, no. 12, pp. 1579–1585, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. R. Rodrigues, S. Manenti, P. R. T. Romao et al., “Young pregnant women living with HIV/AIDS in criciuma, Southern Brazil, are infected almost exclusively with HIV type 1 clade C,” AIDS Research and Human Retroviruses, vol. 26, no. 3, pp. 351–357, 2010. View at Publisher · View at Google Scholar · View at Scopus