Table of Contents Author Guidelines Submit a Manuscript
AIDS Research and Treatment
Volume 2012 (2012), Article ID 874083, 9 pages
http://dx.doi.org/10.1155/2012/874083
Review Article

TB and HIV Therapeutics: Pharmacology Research Priorities

1Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Osler 527, Baltimore, MD 21287, USA
2Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA

Received 26 January 2012; Accepted 13 March 2012

Academic Editor: Gary Maartens

Copyright © 2012 Kelly E. Dooley et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. UNAIDS, “The global AIDS epidemic,” Global Report Fact Sheet 2010, http://www.unaids.org/en/media/unaids/contentassets/documents/factsheet/2010/20101123_FS_Global_em_en.pdf.
  2. World Health Organization, “Global tuberculosis control 2011,” Global TB control report 2011 WHO/HTM/TB/2011.16.
  3. S. S. Abdool Karim, K. Naidoo, A. Grobler et al., “Timing of initiation of antiretroviral drugs during tuberculosis therapy,” The New England Journal of Medicine, vol. 362, no. 8, pp. 697–706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Abdool Karim, K. Naidoo, A. Grobler et al., “Integration of antiretroviral therapy with tuberculosis treatment,” The New England Journal of Medicine, vol. 365, no. 16, pp. 1492–1501, 2011. View at Publisher · View at Google Scholar
  5. F. Blanc, T. Sok, D. Laureillard et al., “Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis,” The New England Journal of Medicine, vol. 365, pp. 1471–1481, 2011. View at Google Scholar
  6. D. V. Havlir, M. A. Kendall, P. Ive et al., “Timing of antiretroviral therapy for HIV-1 infection and tuberculosis,” The New England Journal of Medicine, vol. 352, pp. 1482–1491, 2011. View at Google Scholar
  7. S. Naiker, C. Conolly, L. Weisner et al., “Pharmacokinetic evaluation of different rifabutin dosing strategies in African TB patients on lopinavir/ritonavir-based ART,” in Proceedings of the 18th Conference on Retrovirueses and Opportunistic Infections (CROI '11), p. 650, 2011, paper #650.
  8. M. Weiner, D. Benator, W. Burman et al., “Association between acquired rifamycin resistance and the pharmacokinetics of rifabutin and isoniazid among patients with HIV and tuberculosis,” Clinical Infectious Diseases, vol. 40, no. 10, pp. 1481–1491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Niemi, J. T. Backman, M. F. Fromm, P. J. Neuvonen, and K. T. Kivistö, “Pharmacokinetic interactions with rifampicin: clinical relevance,” Clinical Pharmacokinetics, vol. 42, no. 9, pp. 819–850, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Boulle, G. Van Cutsem, K. Cohen, K. Hilderbrand, S. Mathee, M. Abrahams et al., “Outcomes of nevirapine- and efavirenz-based antiretroviral therapy when coadministered with rifampicin-based antitubercular therapy,” Journal of the American Medical Association, vol. 300, no. 5, pp. 530–539, 2008. View at Publisher · View at Google Scholar
  11. W. Manosuthi, S. Sungkanuparph, P. Tantanathip, A. Lueangniyomkul, W. Mankatitham, W. Prasithsirskul et al., “A randomized trial comparing plasma drug concentrations and efficacies between 2 nonnucleoside reverse-transcriptase inhibitor-based regimens in HIV-infected patients receiving rifampicin: the N2R Study,” Clinical Infectious Diseases, vol. 48, no. 12, pp. 1752–1759, 2009. View at Publisher · View at Google Scholar
  12. S. Swaminathan, C. Padmapriyadarsini, P. Venkatesan et al., “Efficacy and safety of once-daily nevirapine-or efavirenz-based antiretroviral therapy in HIV-associated tuberculosis: a randomized clinical trial,” Clinical Infectious Diseases, vol. 53, no. 7, pp. 716–724, 2011. View at Google Scholar
  13. K. Cohen, A. Grant, C. Dandara et al., “Effect of rifampicin-based antitubercular therapy and the cytochrome P450 2B6 516G>T polymorphism on efavirenz concentrations in adults in South Africa,” Antiviral Therapy, vol. 14, no. 5, pp. 687–695, 2009. View at Google Scholar · View at Scopus
  14. E. Ngaimisi, S. Mugusi, O. Minzi et al., “Effect of rifampicin and CYP2B6 genotype on long-term efavirenz autoinduction and plasma exposure in HIV patients with or without tuberculosis,” Clinical Pharmacology and Therapeutics, vol. 90, pp. 406–413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. P. Acosta, M. A. Kendall, J. G. Gerber, B. Alston-Smith, S. L. Koletar, A. R. Zolopa et al., “Effect of concomitantly administered rifampin on the pharmacokinetics and safety of atazanavir administered twice daily,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3104–3110, 2007. View at Publisher · View at Google Scholar
  16. D. M. Burger, S. Agarwala, M. Child, A. Been-Tiktak, Y. Wang, and R. Bertz, “Effect of rifampin on steady-state pharmacokinetics of atazanavir with ritonavir in healthy volunteers,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 10, pp. 3336–3342, 2006. View at Publisher · View at Google Scholar
  17. U. S. Justesen, A. B. Andersen, N. A. Klitgaard, K. Brosen, J. Gerstoft, and C. Pedersen, “Pharmacokinetic interaction between rifampin and the combination of indinavir and low-dose ritonavir in HIV-infected patients,” Clinical Infectious Diseases, vol. 38, no. 3, pp. 426–429, 2004. View at Publisher · View at Google Scholar
  18. C. LaPorte, E. Colbers, R. Bertz, D. Vonchek, K. Wikstrom, M. Boeree et al., “Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 5, pp. 1553–1560, 2004. View at Publisher · View at Google Scholar
  19. C. Schmitt, M. Riek, K. Winters, M. Schutz, and S. Grange, “Unexpected hepatotoxicity of rifampin and saquinavir/ritonavir in healthy male volunteers,” Archives of Drug Information, vol. 2, no. 1, pp. 8–16, 2009. View at Publisher · View at Google Scholar
  20. D. W. Haas, S. L. Koletar, L. Laughlin, M. A. Kendall, C. Suckow, J. G. Gerber et al., “Hepatotoxicity and gastrointestinal intolerance when healthy volunteers taking rifampin add twice-daily atazanavir and ritonavir,” Journal of Acquired Immune Deficiency Syndromes, vol. 50, no. 3, pp. 290–293, 2009. View at Publisher · View at Google Scholar
  21. H. M. Nijland, R. F. L'homme, G. A. Rongen, P. van Uden, R. van Crevel, M. J. Boeree et al., “High incidence of adverse events in healthy volunteers receiving rifampicin and adjusted doses of lopinavir/ritonavir tablets,” AIDS, vol. 22, no. 8, pp. 931–935, 2008. View at Publisher · View at Google Scholar
  22. A. Loeliger, A. B. Suthar, D. Ripin et al., “Protease inhibitor-containing antiretroviral treatment and tuberculosis: can rifabutin fill the breach?” The International Journal of Tuberculosis and Lung Disease, vol. 16, no. 1, pp. 6–15, 2012. View at Google Scholar
  23. C. B. Trapnell, C. Jamis-Dow, R. W. Klecker, and J. M. Collins, “Metabolism of rifabutin and its 25-desacetyl metabolite, LM565, by human liver microsomes and recombinant human cytochrome P-450 3A4: relevance to clinical interaction with fluconazole,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 5, pp. 924–926, 1997. View at Google Scholar · View at Scopus
  24. A. Cato III, J. Cavanaugh, H. Shi, A. Hsu, J. Leonard, and R. Granneman, “The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin,” Clinical Pharmacology and Therapeutics, vol. 63, no. 4, pp. 414–421, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. E. H. Decloedt, H. McIlleron, P. Smith, C. Merry, C. Orrell, and G. Maartens, “Pharmacokinetics of lopinavir in HIV-infected adults receiving rifampin with adjusted doses of lopinavir-ritonavir tablets,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 7, pp. 3195–3200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. A. Wenning, W. D. Hanley, D. M. Brainard et al., “Effect of rifampin, a potent inducer of drug-metabolizing enzymes, on the pharmacokinetics of raltegravir,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 7, pp. 2852–2856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Ananworanich, M. Gorowara, A. Avihingsanon et al., “Pharmacokinetic and short-term virologic response of low dose raltegravir 400mg once daily maintenance therapy,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 4, pp. 1892–1898, 2012. View at Google Scholar
  28. J. J. Eron Jr., J. K. Rockstroh, J. Reynes et al., “Raltegravir once daily or twice daily in previously untreated patients with HIV-1: a randomised, active-controlled, phase 3 non-inferiority trial,” The Lancet Infectious Diseases, vol. 59, no. 3, pp. 229–235, 2011. View at Google Scholar
  29. A. Vernon, W. Burman, D. Benator, A. Khan, and L. Bozeman, “Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid,” The Lancet, vol. 353, no. 9167, pp. 1843–1847, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Weiner, W. Burman, A. Vernon et al., “Low isoniazid concentrations and outcome of tuberculosis treatment with once-weekly isoniazid and rifapentine,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 10, pp. 1341–1347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Srivastava, C. Sherman, C. Meek, R. Leff, and T. Gumbo, “Pharmacokinetic mismatch does not lead to emergence of isoniazid—or rifampin—resistant Mycobacterium tuberculosis but to better antimicrobial effect: a new paradigm for antituberculosis drug scheduling,” Antimicrob Agents Chemotherapy, vol. 55, no. 11, pp. 5085–5089, 2011. View at Google Scholar
  32. C. A. Peloquin, “Pharmacokinetic mismatch of tuberculosis drugs,” Antimicrob Agents Chemotherapy, vol. 56, no. 3, article 1666, 2012. View at Google Scholar
  33. K. E. Dooley, E. E. Bliven-Sizemore, M. Weiner et al., “Safety and pharmacokinetics of escalating daily doses of rifapentine, an anti-tuberculosis drug, in healthy volunteers,” Clinical Pharmacology & Therapeutics, vol. 91, no. 5, pp. 881–888, 2012. View at Google Scholar
  34. T. R. Sterling, M. E. Villarino, A. S. Borisov et al., “Three months of rifapentine and isoniazid for latent tuberculosis infection,” The New England Journal of Medicine, vol. 365, no. 23, pp. 2155–2166, 2011. View at Google Scholar
  35. Z. Desta, N. V. Soukhova, and D. A. Flockhart, “Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 2, pp. 382–392, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. A. H. Diacon, A. Pym, M. Grobusch et al., “The diarylquinoline TMC207 for multidrug-resistant tuberculosis,” The New England Journal of Medicine, vol. 360, no. 23, pp. 2397–2405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. C. F. McNeeley, TMC207 Team, A. H. Diacon et al., “TMC-207 versus placebo plus OBT for the treatment of MDR-TB: a prospective clinical trial,” in Proceedings of the 41st World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease, Berlin, Germany, November 2010.
  38. D. F. McNeeley and A. H. Diacon, “TMC207: Recent advances in development,” 2006, http://www.kaisernetwork.org/health_cast/uploaded_files/18_2_MCNEELEY_DAVID.pdf.
  39. K. E. Dooley, J. G. Park, S. Swindells et al., “Safety, tolerability, and pharmacokinetic interactions of the antituberculous agent TMC207 (bedaquiline) with efavirenz in healthy volunteers: AIDS Clinical Trials Group study A5267,” Journal of Acquired Immune Deficiency Syndromes, vol. 59, no. 5, pp. 455–462, 2012. View at Google Scholar
  40. N. Mesens, J. Verbeeck, M. C. Rouan, K. De Beule, and P. Vanparys, “Elucidating the role of M2 in the preclinical safety profile of TMC207,” in Proceedings of the 38th Union World Conference on Lung Health, Cape Town, South Africa, Abstract PS-71291-11, November 2007.
  41. R. van Heeswijk, A. Vandevoorde, P. Meyvisch, T. DeMarez, D. McNeeley, and R. Hoetelmans, “The effect of nevirapine on the pharmacokinetics of TMC207, an investigational antimycobacterial agent, in HIV-1-infected subjects,” in Proceedings of the 6th IAS Conference on HIV Pathogenesis, Prevention, and Treatment, Rome, Italy, 2011.
  42. R. van Heeswijk, A. Vandevoorde, P. Meyvisch et al., “The effect of lopinavir/ritonavir on the pharmacokinetics of TMC207, an investigational antimycobacterial agent,” in Proceedings of the 18th International AIDS Conference, Vienna, Austria, Abstract WEPE0097, 2010.
  43. C. K. Stover, P. Warrener, D. R. VanDevanter et al., “A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis,” Nature, vol. 405, no. 6789, pp. 962–966, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Nuermberger, S. Tyagi, R. Tasneen et al., “Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 4, pp. 1522–1524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. H. Diacon, R. Dawson, M. Hanekom et al., “Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 8, pp. 3402–3407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Jia, J. E. Tomaszewski, C. Hanrahan et al., “Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug,” British Journal of Pharmacology, vol. 144, no. 1, pp. 80–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Tahlan, R. Wilson, D. B. Kastrinsky et al., “SQ109 targets mmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of mycobacterium tuberculosis,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 4, pp. 1797–1809, 2012. View at Google Scholar
  48. P. Chen, J. Gearhart, M. Protopopova, L. Einck, and C. A. Nacy, “Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro,” Journal of Antimicrobial Chemotherapy, vol. 58, no. 2, pp. 332–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Jia, P. E. Noker, L. Coward, G. S. Gorman, M. Protopopova, and J. E. Tomaszewski, “Interspecies pharmacokinetics and in vitro metabolism of SQ109,” British Journal of Pharmacology, vol. 147, no. 5, pp. 476–485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. R. S. Wallis, W. Jakubiec, V. Kumar et al., “Biomarker-assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculosis,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 2, pp. 567–574, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. V. Kumar, J. Liu, R. S. Wallis et al., “Population PK-PD modeling of phase 1 data of PNU-100480 to guide doses for phase 2a study,” in Proceedings of the 3rd International Workshop on Clinical Pharmacology of TB Drugs, Boston, Mass, USA, September 2010.
  52. World Health Organization, “Rapid advice: Treatment of tuberculosis in children,” WHO/HTM/TB 2010.13, 2010. View at Google Scholar
  53. J. N. van den Anker, M. Schwab, and G. L. Kearns, “Developmental pharmacokinetics,” Handbook of Experimental Pharmacology Journal, vol. 205, pp. 51–75, 2011. View at Google Scholar
  54. H. McIlleron, Y. Ren, J. Nuttall et al., “Lopinavir exposure is insufficient in children given double doses of lopinavir/ritonavir during rifampicin-based treatment for tuberculosis,” Antiviral Therapy, vol. 16, no. 3, pp. 417–421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. M. Oudijk, H. McIlleron, V. Mulenga et al., “PKs of nevirapine in young children during combined ART and rifampicin-containing anti-TB treatment,” in Proceedings of the 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Cape Town, South Africa, Abstract LBPEB10, July 2009.
  56. D. Elsherbiny, Y. Ren, H. McIlleron, G. Maartens, and U. S. H. Simonsson, “Population pharmacokinetics of lopinavir in combination with rifampicin-based antitubercular treatment in HIV-infected South African children,” European Journal of Clinical Pharmacology, vol. 66, no. 10, pp. 1017–1023, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Ren, J. J. C. Nuttall, C. Egbers et al., “Effect of rifampicin on lopinavir pharmacokinetics in HIV-infected children with tuberculosis,” Journal of Acquired Immune Deficiency Syndromes, vol. 47, no. 5, pp. 566–569, 2008. View at Publisher · View at Google Scholar · View at Scopus