Table of Contents Author Guidelines Submit a Manuscript
AIDS Research and Treatment
Volume 2012 (2012), Article ID 953678, 10 pages
http://dx.doi.org/10.1155/2012/953678
Review Article

Interactive Effects of Morphine on HIV Infection: Role in HIV-Associated Neurocognitive Disorder

1Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
2Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007, India

Received 16 September 2011; Revised 13 February 2012; Accepted 2 March 2012

Academic Editor: Marjorie Robert-Guroff

Copyright © 2012 Pichili Vijaya Bhaskar Reddy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Antinori, G. Arendt, J. T. Becker et al., “Updated research nosology for HIV-associated neurocognitive disorders,” Neurology, vol. 69, no. 18, pp. 1789–1799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Goodkin, F. L. Wilkie, M. Concha et al., “Aging and neuro-AIDS conditions and the changing spectrum of HIV-1-associated morbidity and mortality,” Journal of Clinical Epidemiology, vol. 54, no. 12, supplement 1, pp. S35–S43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. McArthur, D. R. Hoover, H. Bacellar et al., “Dementia in AIDS patients: incidence and risk factors. multicenter AIDS Cohort Study,” Neurology, vol. 43, pp. 2245–2252, 1993. View at Google Scholar
  4. M. Mintz, “Clinical comparison of adult and pediatric NeuroAIDS,” Advances in Neuroimmunology, vol. 4, no. 3, pp. 207–221, 1994. View at Google Scholar · View at Scopus
  5. K. R. Robertson and C. D. Hall, “Human immunodeficiency virus-related cognitive impairment and the acquired immunodeficiency syndrome dementia complex,” Seminars in Neurology, vol. 12, no. 1, pp. 18–27, 1992. View at Google Scholar · View at Scopus
  6. J. Zheng and H. E. Gendelman, “The HIV-1 associated dementia complex: a metabolic encephalopathy fueled by viral replication in mononuclear phagocytes,” Current Opinion in Neurology, vol. 10, no. 4, pp. 319–325, 1997. View at Google Scholar · View at Scopus
  7. C. Beyrer, M. H. Razak, K. Lisam, J. Chen, W. Lui, and X. F. Yu, “Overland heroin trafficking routes and HIV-1 spread in south and south-east Asia,” AIDS, vol. 14, no. 1, pp. 75–83, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Bokhari, R. Hegde, S. Callen et al., “Morphine potentiates neuropathogenesis of SIV infection in Rhesus Macaques,” Journal of Neuroimmune Pharmacology, pp. 1–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. M. Bokhari, H. Yao, C. Bethel-Brown et al., “Morphine enhances Tat-induced activation in murine microGlia,” Journal of NeuroVirology, vol. 15, no. 3, pp. 219–228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. M. Donahoe, “Multiple ways that drug abuse might influence AIDS progression: clues from a monkey model,” Journal of Neuroimmunology, vol. 147, no. 1-2, pp. 28–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Francis, “Substance abuse and HIV infection,” Topics in HIV Medicine, vol. 11, no. 1, pp. 20–24, 2003. View at Google Scholar · View at Scopus
  12. F. Kapadia, D. Vlahov, R. M. Donahoe, and G. Friedland, “The role of substance abuse in HIV disease progression: reconciling differences from laboratory and epidemiologic investigations,” Clinical Infectious Diseases, vol. 41, no. 7, pp. 1027–1034, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Vaswani and N. G. Desai, “HIV infection and high-risk behaviors in opioid dependent patients: the Indian context,” Addictive Behaviors, vol. 29, no. 8, pp. 1699–1705, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. E. Bell, I. C. Anthony, and P. Simmonds, “Impact of HIV on regional & cellular organization of the brain,” Current HIV Research, vol. 4, no. 3, pp. 249–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. E. Bell, R. P. Brettle, A. Chiswick, and P. Simmonds, “HIV encephalitis, proviral load and dementia in drug users and homosexuals with AIDS. Effect of neocortical involvement,” Brain, vol. 121, no. 11, pp. 2043–2052, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Nath, W. F. Maragos, M. J. Avison, F. A. Schmitt, and J. R. Berger, “Acceleration of HIV dementia with methamphetamine and cocaine,” Journal of NeuroVirology, vol. 7, no. 1, pp. 66–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Ellis, D. Langford, and E. Masliah, “HIV and antiretroviral therapy in the brain: neuronal injury and repair,” Nature Reviews Neuroscience, vol. 8, no. 1, pp. 33–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. McArthur and B. J. Brew, “HIV-associated neurocognitive disorders: is there a hidden epidemic?” AIDS, vol. 24, no. 9, pp. 1367–1370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Nath, K. F. Hauser, V. Wojna et al., “Molecular basis for interactions of HIV and drugs of abuse,” Journal of Acquired Immune Deficiency Syndromes, vol. 31, supplement 2, pp. S62–S69, 2002. View at Google Scholar
  20. T. K. Eisenstein and M. E. Hilburger, “Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations,” Journal of Neuroimmunology, vol. 83, no. 1-2, pp. 36–44, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Messmer, I. Hatsukari, N. Hitosugi, I. G. H. Schmidt-Wolf, and P. C. Singhal, “Morphine reciprocally regulates IL-10 and IL-12 production by monocyte-derived human dendritic cells and enhances T cell activation,” Molecular Medicine, vol. 12, no. 11-12, pp. 284–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Rivera-Amill, P. S. Silverstein, R. J. Noel, S. Kumar, and A. Kumar, “Morphine and rapid disease progression in nonhuman primate model of AIDS: inverse correlation between disease progression and virus evolution,” Journal of Neuroimmune Pharmacology, vol. 5, no. 1, pp. 122–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. B. Saurer, K. A. Carrigan, S. G. Ijames, and D. T. Lysle, “Suppression of natural killer cell activity by morphine is mediated by the nucleus accumbens shell,” Journal of Neuroimmunology, vol. 173, no. 1-2, pp. 3–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Wang, R. A. Barke, J. Ma, R. Charboneau, and S. Roy, “Opiate abuse, innate immunity, and bacterial infectious diseases,” Archivum Immunologiae et Therapia Experimentalis (Warsz), vol. 56, pp. 299–309, 2008. View at Google Scholar
  25. K. F. Hauser, N. El-Hage, S. Buch et al., “Molecular targets of opiate drug abuse in neuroAIDS,” Neurotoxicity Research, vol. 8, no. 1-2, pp. 63–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Nath, C. Anderson, M. Jones et al., “Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia,” Journal of Psychopharmacology, vol. 14, no. 3, pp. 222–227, 2000. View at Google Scholar · View at Scopus
  27. F. Dronda, J. Zamora, S. Moreno et al., “CD4 cell recovery during successful antiretroviral therapy in naive HIV-infected patients: the role of intravenous drug use,” AIDS, vol. 18, no. 16, pp. 2210–2212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Kumar, C. Torres, Y. Yamamura et al., “Modulation by morphine of viral set point in rhesus macaques infected with simian immunodeficiency virus and simian-human immunodeficiency virus,” Journal of Virology, vol. 78, no. 20, pp. 11425–11428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. N. K. Banda, J. Bernier, D. K. Kurahara et al., “Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis,” Journal of Experimental Medicine, vol. 176, no. 4, pp. 1099–1106, 1992. View at Google Scholar · View at Scopus
  30. M. L. Gougeon and L. Montagnier, “Apoptosis in AIDS,” Science, vol. 260, no. 5112, pp. 1269–1270, 1993. View at Google Scholar · View at Scopus
  31. C. J. Li, D. J. Friedman, C. Wang, V. Metelev, and A. B. Pardee, “Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein,” Science, vol. 268, no. 5209, pp. 429–431, 1995. View at Google Scholar · View at Scopus
  32. Y. Y. Lu, Y. Koga, K. Tanaka, M. Sasaki, G. Kimura, and K. Nomoto, “Apoptosis induced in CD4+ cells expressing gp160 of human immunodeficiency virus type 1,” Journal of Virology, vol. 68, no. 1, pp. 390–399, 1994. View at Google Scholar · View at Scopus
  33. P. K. Peterson, G. Gekker, S. Hu et al., “Morphine amplifies HIV-1 expression in chronically infected promonocytes cocultured with human brain cells,” Journal of Neuroimmunology, vol. 50, no. 2, pp. 167–175, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. P. K. Peterson, G. Gekker, R. Schut, S. Hu, H. H. Balfour, and C. C. Chao, “Enhancement of HIV-1 replication by opiates and cocaine: the cytokine connection,” Advances in Experimental Medicine and Biology, vol. 335, pp. 181–188, 1993. View at Google Scholar · View at Scopus
  35. M. P. N. Nair, S. A. Schwartz, R. Polasani, J. Hou, A. Sweet, and K. C. Chadha, “Immunoregulatory effects of morphine on human lymphocytes,” Clinical and Diagnostic Laboratory Immunology, vol. 4, no. 2, pp. 127–132, 1997. View at Google Scholar · View at Scopus
  36. J. Moorman, Y. Zhang, B. Liu et al., “HIV-1 gp120 primes lymphocytes for opioid-induced, beta-arrestin 2-dependent apoptosis,” Biochimica et Biophysica Acta, vol. 1793, pp. 1366–1371, 2009. View at Google Scholar
  37. M. Rojavin, I. Szabo, J. L. Bussiere, T. J. Rogers, M. W. Adler, and T. K. Eisenstein, “Morphine treatment in vitro or in vivo decreases phagocytic functions of murine macrophages,” Life Sciences, vol. 53, no. 12, pp. 997–1006, 1993. View at Google Scholar · View at Scopus
  38. N. Zhang and J. J. Oppenheim, “Crosstalk between chemokines and neuronal receptors bridges immune and nervous systems,” Journal of Leukocyte Biology, vol. 78, no. 6, pp. 1210–1214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Beltran, A. Pallur, and S. L. Chang, “HIV-1 gp120 up-regulation of the mu opioid receptor in TPA-differentiated HL-60 cells,” International Immunopharmacology, vol. 6, no. 9, pp. 1459–1467, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. P. K. Peterson, G. Gekker, J. R. Lokensgard et al., “κ-opioid receptor agonist suppression of HIV-1 expression in CD4+ lymphocytes,” Biochemical Pharmacology, vol. 61, no. 9, pp. 1145–1151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. J. R. Lokensgard, G. Gekker, and P. K. Peterson, “κ-Opioid receptor agonist inhibition of HIV-1 envelope glycoprotein-mediated membrane fusion and CXCR4 expression on CD4+ lymphocytes,” Biochemical Pharmacology, vol. 63, no. 6, pp. 1037–1041, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. K. F. Hauser, Y. K. Hahn, V. V. Adjan et al., “HIV-1 tat and morphine have interactive effects on oligodendrocyte survival and morphology,” Glia, vol. 57, no. 2, pp. 194–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Hu, W. S. Sheng, J. R. Lokensgard, and P. K. Peterson, “Morphine potentiates HIV-1 gp120-induced neuronal apoptosis,” Journal of Infectious Diseases, vol. 191, no. 6, pp. 886–889, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Malik, H. Khalique, S. Buch, and P. Seth, “A growth factor attenuates HIV-1 Tat and morphine induced damage to human neurons: implication in HIV/AIDS-drug abuse cases,” PLoS ONE, vol. 6, no. 3, Article ID e18116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Kaul, G. A. Garden, and S. A. Lipton, “Pathways to neuronal injury and apoptosis in HIV-associated dementia,” Nature, vol. 410, no. 6831, pp. 988–994, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. J. A. Gurwell, A. Nath, Q. Sun et al., “Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 Tat protein in striatal neurons in vitro,” Neuroscience, vol. 102, no. 3, pp. 555–563, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. S. D. Mahajan, S. A. Schwartz, T. C. Shanahan, R. P. Chawda, and M. P. Nair, “Morphine regulates gene expression of alpha- and beta-chemokines and their receptors on astroGlial cells via the opioid mu receptor,” The Journal of Immunology, vol. 169, pp. 3589–3599, 2002. View at Google Scholar
  48. N. El-Hage, G. Wu, J. Wang et al., “HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microGlia through the expression of MCP-1 and alternative chemokines,” Glia, vol. 53, no. 2, pp. 132–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. D. Mahajan, S. A. Schwartz, R. Aalinkeel, R. P. Chawda, D. E. Sykes, and M. P. N. Nair, “Morphine modulates chemokine gene regulation in normal human astrocytes,” Clinical Immunology, vol. 115, no. 3, pp. 323–332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. N. El-Hage, A. J. Bruce-Keller, T. Yakovleva et al., “Morphine exacerbates HIV-1 Tat-induced cytokine production in astrocytes through convergent effects on [Ca2+]i, NF-κB trafficking and transcription,” PLoS ONE, vol. 3, no. 12, Article ID e4093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Dong and E. N. Benveniste, “Immune function of astrocytes,” Glia, vol. 36, no. 2, pp. 180–190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. S. M. Allan and N. J. Rothwell, “Inflammation in central nervous system injury,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1438, pp. 1669–1677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Rahman, K. Harvey, and R. A. Siddiqui, “Interleukin-8: an autocrine inflammatory mediator,” Current Pharmaceutical Design, vol. 5, no. 4, pp. 241–253, 1999. View at Google Scholar · View at Scopus
  54. M. Baggiolini and I. Clark-Lewis, “Interleukin-8, a chemotactic and inflammatory cytokine,” FEBS Letters, vol. 307, no. 1, pp. 97–101, 1992. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Shah and A. Kumar, “HIV-1 gp120-mediated increases in IL-8 production in astrocytes are mediated through the NF-κB pathway and can be silenced by gp120-specific siRNA,” Journal of Neuroinflammation, vol. 7, article 96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. E. R. Sherwood and D. S. Prough, “Interleukin-8, neuroinflammation, and secondary brain injury,” Critical Care Medicine, vol. 28, no. 4, pp. 1221–1223, 2000. View at Google Scholar · View at Scopus
  57. S. Meddows-Taylor, D. J. Martin, and C. T. Tiemessen, “Reduced expression of interleukin-8 receptors A and B on polymorphonuclear neutrophils from persons with human immunodeficiency virus type 1 disease and pulmonary tuberculosis,” Journal of Infectious Diseases, vol. 177, no. 4, pp. 921–930, 1998. View at Google Scholar · View at Scopus
  58. T. S. Stantchev and C. C. Broder, “Human immunodeficiency virus type-1 and chemokines: beyond competition for common cellular receptors,” Cytokine and Growth Factor Reviews, vol. 12, no. 2-3, pp. 219–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. N. El-Hage, J. A. Gurwell, I. N. Singh, P. E. Knapp, A. Nath, and K. F. Hauser, “Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 tat,” Glia, vol. 50, no. 2, pp. 91–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. A. J. Bruce-Keller, S. W. Barger, N. I. Moss, J. T. Pham, J. N. Keller, and A. Nath, “Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microGlial cell line: attenuation by 17β-estradiol,” Journal of Neurochemistry, vol. 78, no. 6, pp. 1315–1324, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Turchan-Cholewo, F. O. Dimayuga, S. Gupta et al., “Morphine and HIV-Tat increase microGlial-free radical production and oxidative stress: possible role in cytokine regulation,” Journal of Neurochemistry, vol. 108, no. 1, pp. 202–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Lusso, “HIV and chemokines: implications for therapy and vaccine,” Vaccine, vol. 20, no. 15, pp. 1964–1967, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Verani and P. Lusso, “Chemokines as natural HIV antagonists,” Current Molecular Medicine, vol. 2, no. 8, pp. 691–702, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. V. C. Asensio and L. L. Campbell, “Chemokines and viral diseases of the central nervous system,” Advances in Virus Research, vol. 56, pp. 127–173, 2001. View at Google Scholar · View at Scopus
  65. M. E. Dorf, M. A. Berman, S. Tanabe, M. Heesen, and Y. Luo, “Astrocytes express functional chemokine receptors,” Journal of Neuroimmunology, vol. 111, no. 1-2, pp. 109–121, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Conant, A. Garzino-Demo, A. Nath et al., “Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3117–3121, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. E. A. Eugenin, K. Osiecki, L. Lopez, H. Goldstein, T. M. Calderon, and J. W. Berman, “CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS,” Journal of Neuroscience, vol. 26, no. 4, pp. 1098–1106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. W. Kelder, J. C. McArthur, T. Nance-Sproson, D. McClernon, and D. E. Griffin, “β-Chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia,” Annals of Neurology, vol. 44, no. 5, pp. 831–835, 1998. View at Google Scholar · View at Scopus
  69. C. M. McManus, K. Weidenheim, S. E. Woodman et al., “Chemokine and chemokine-receptor expression in human Glial elements: induction by the HIV protein, Tat, and chemokine autoregulation,” American Journal of Pathology, vol. 156, no. 4, pp. 1441–1453, 2000. View at Google Scholar · View at Scopus
  70. T. Lehner, “The role of CCR5 chemokine ligands and antibodies to CCR5 coreceptors in preventing HIV infection,” Trends in Immunology, vol. 23, no. 7, pp. 347–351, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Murakami and N. Yamamoto, “Roles of chemokines and chemokine receptors in HIV-1 infection,” International Journal of Hematology, vol. 72, no. 4, pp. 412–417, 2000. View at Google Scholar · View at Scopus
  72. J. L. Mankowski, S. E. Queen, J. E. Clements, and M. C. Zink, “Cerebrospinal fluid markers that predict SIV CNS disease,” Journal of Neuroimmunology, vol. 157, no. 1-2, pp. 66–70, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. J. J. Sevigny, S. M. Albert, M. P. McDermott et al., “Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia,” Neurology, vol. 63, no. 11, pp. 2084–2090, 2004. View at Google Scholar · View at Scopus
  74. R. B. Rock, S. Hu, W. S. Sheng, and P. K. Peterson, “Morphine stimulates CCL2 production by human neurons,” Journal of Neuroinflammation, vol. 3, article 32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. A. Wetzel, A. D. Steele, T. K. Eisenstein, M. W. Adler, E. E. Henderson, and T. J. Rogers, “μ-Opioid induction of monocyte chemoattractant protein-1, RANTES, and IFN-γ-inducible protein-10 expression in human peripheral blood mononuclear cells,” Journal of Immunology, vol. 165, no. 11, pp. 6519–6524, 2000. View at Google Scholar · View at Scopus
  76. N. El-Hage, G. Wu, J. Ambati, A. J. Bruce-Keller, P. E. Knapp, and K. F. Hauser, “CCR2 mediates increases in Glial activation caused by exposure to HIV-1 Tat and opiates,” Journal of Neuroimmunology, vol. 178, no. 1-2, pp. 9–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Vallejo, O. de Leon-Casasola, and R. Benyamin, “Opioid therapy and immunosuppression: a review,” American Journal of Therapeutics, vol. 11, no. 5, pp. 354–365, 2004. View at Google Scholar · View at Scopus
  78. R. C. Gallo, A. Garzino-Demo, and A. L. DeVico, “HIV infection and pathogenesis: what about chemokines?” Journal of Clinical Immunology, vol. 19, no. 5, pp. 293–299, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Garzino-Demo, A. L. DeVico, F. Cocchi, and R. C. Gallo, “Beta-chemokines and protection from HIV type 1 disease,” AIDS Research and Human Retroviruses, vol. 14, pp. S177–S184, 1998. View at Google Scholar · View at Scopus
  80. A. Garzino-Demo, A. L. Devico, and R. C. Gallo, “Chemokine receptors and chemokines in HIV infection,” Journal of Clinical Immunology, vol. 18, no. 4, pp. 243–255, 1998. View at Publisher · View at Google Scholar · View at Scopus
  81. O. M. Howard, J. J. Oppenheim, and J. M. Wang, “Chemokines as molecular targets for therapeutic intervention,” Journal of Clinical Immunology, vol. 19, no. 5, pp. 280–292, 1999. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Kinter, J. Arthos, C. Cicala, and A. S. Fauci, “Chemokines, cytokines and HIV: a complex network of interactions that influence HIV pathogenesis,” Immunological Reviews, vol. 177, pp. 88–98, 2000. View at Google Scholar · View at Scopus
  83. T. E. Lane, V. C. Asensio, N. Yu, A. D. Paoletti, I. L. Campbell, and M. J. Buchmeier, “Dynamic regulation of alpha- and beta-chemokine expression in the central nervous system during mouse hepatitis virus-induced demyelinating disease,” The Journal of Immunology, vol. 160, pp. 970–978, 1998. View at Google Scholar
  84. S. D. Mahajan, R. Aalinkeel, J. L. Reynolds et al., “Morphine exacerbates HIV-1 viral protein gp120 induced modulation of chemokine gene expression in U373 astrocytoma cells,” Current HIV Research, vol. 3, no. 3, pp. 277–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. M. D. Miller and M. S. Krangel, “Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines,” Critical Reviews in Immunology, vol. 12, no. 1-2, pp. 17–46, 1992. View at Google Scholar · View at Scopus
  86. N. El-Hage, A. J. Bruce-Keller, P. E. Knapp, and K. F. Hauser, “CCL5/RANTES gene deletion attenuates opioid-induced increases in Glial CCL2/MCP-1 immunoreactivity and activation in HIV-1 Tat-exposed mice,” Journal of Neuroimmune Pharmacology, vol. 3, no. 4, pp. 275–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Kitai, M. L. Zhao, N. Zhang, L. L. Hua, and S. C. Lee, “Role of MIP-1β and RANTES in HIV-1 infection of microGlia: inhibition of infection and induction by IFNβ,” Journal of Neuroimmunology, vol. 110, no. 1-2, pp. 230–239, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. V. G. Sasseville, M. M. Smith, C. R. Mackay et al., “Chemokine expression in simian immunodeficiency virus-induced AIDS encephalitis,” American Journal of Pathology, vol. 149, no. 5, pp. 1459–1467, 1996. View at Google Scholar · View at Scopus
  89. Y. Li, J. D. Merrill, K. Mooney et al., “Morphine enhances HIV infection of neonatal macrophages,” Pediatric Research, vol. 54, no. 2, pp. 282–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. A. D. Steele, E. E. Henderson, and T. J. Rogers, “μ-Opioid modulation of HIV-1 coreceptor expression and HIV-1 replication,” Virology, vol. 309, no. 1, pp. 99–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. J. S. Gutkind, “The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades,” The Journal of Biological Chemistry, vol. 273, no. 4, pp. 1839–1842, 1998. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Chen, M. Farooqui, and K. Gupta, “Morphine stimulates vascular endothelial growth factor-like signaling in mouse retinal endothelial cells,” Current Neurovascular Research, vol. 3, no. 3, pp. 171–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Gupta, S. Kshirsagar, L. Chang et al., “Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth,” Cancer Research, vol. 62, no. 15, pp. 4491–4498, 2002. View at Google Scholar · View at Scopus
  94. J. M. Jacqué, A. Mann, H. Enslen et al., “Modulation of HIV-1 infectivity by MAPK, a virion-associated kinase,” The EMBO Journal, vol. 17, no. 9, pp. 2607–2618, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. W. Popik, J. E. Hesselgesser, and P. M. Pitha, “Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway,” Journal of Virology, vol. 72, no. 8, pp. 6406–6413, 1998. View at Google Scholar · View at Scopus
  96. X. Yang and D. Gabuzda, “Regulation of human immunodeficiency virus type 1 infectivity by the ERK mitogen-activated protein kinase signaling pathway,” Journal of Virology, vol. 73, no. 4, pp. 3460–3466, 1999. View at Google Scholar · View at Scopus
  97. D. A. Frank and M. E. Greenberg, “CREB: a mediator of long-term memory from mollusks to mammals,” Cell, vol. 79, no. 1, pp. 5–8, 1994. View at Publisher · View at Google Scholar · View at Scopus
  98. K. C. Martin and E. R. Kandel, “Cell adhesion molecules, CREB, and the formation of new synaptic connections,” Neuron, vol. 17, no. 4, pp. 567–570, 1996. View at Publisher · View at Google Scholar · View at Scopus
  99. A. J. Silva, J. H. Kogan, P. W. Frankland, and S. Kida, “CREB and memory,” Annual Review of Neuroscience, vol. 21, pp. 127–148, 1998. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Wen, Y. Lu, H. Yao, and S. Buch, “Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability,” PLoS ONE, vol. 6, no. 6, Article ID e21707, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Wang, R. A. Barke, R. Charboneau, H. H. Loh, and S. Roy, “Morphine negatively regulates interferon-γ promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways,” The Journal of Biological Chemistry, vol. 278, no. 39, pp. 37622–37631, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. T. F. Deuel, “Polypeptide growth factors: roles in normal and abnormal cell growth,” Annual Review of Cell Biology, vol. 3, pp. 443–492, 1987. View at Google Scholar · View at Scopus
  103. M. Hannink and D. J. Donoghue, “Structure and function of platelet-derived growth factor (PDGF) and related proteins,” Biochimica et Biophysica Acta, vol. 989, no. 1, pp. 1–10, 1989. View at Google Scholar · View at Scopus
  104. C. H. Heldin, “Structural and functional studies on platelet-derived growth factor,” The EMBO Journal, vol. 11, no. 12, pp. 4251–4259, 1992. View at Google Scholar · View at Scopus
  105. R. Potula, N. Dhillion, Y. Sui et al., “Association of platelet-derived growth factor-B chain with simian human immunodeficiency virus encephalitis,” American Journal of Pathology, vol. 165, no. 3, pp. 815–824, 2004. View at Google Scholar · View at Scopus
  106. E. J. Su, L. Fredriksson, M. Geyer et al., “Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke,” Nature Medicine, vol. 14, no. 7, pp. 731–737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Yao, M. Duan, and S. Buch, “Cocaine-mediated induction of platelet-derived growth factor: implication for increased vascular permeability,” Blood, vol. 117, no. 8, pp. 2538–2547, 2011. View at Publisher · View at Google Scholar · View at Scopus