Table of Contents Author Guidelines Submit a Manuscript
AIDS Research and Treatment
Volume 2012, Article ID 978790, 8 pages
http://dx.doi.org/10.1155/2012/978790
Clinical Study

Effects of Angiotensin Converting Enzyme Inhibitors on Liver Fibrosis in HIV and Hepatitis C Coinfection

1Infectious Disease of Indiana, PSC, 11455 N. Meridian Street Suite 200, Carmel, IN 46032, USA
2Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
3Jack Martin Coinfection Clinic, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1009, New York, NY 10029, USA
4Department of Infectious Diseases, MedStar Washington Hospital Center, 110 Irving Street NW, Room 2A56, Washington, DC 20010, USA

Received 15 May 2012; Accepted 26 September 2012

Academic Editor: Peter Mariuz

Copyright © 2012 Lindsey J. Reese et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Rosenthal, M. Poirée, C. Pradier et al., “Mortality due to hepatitis C-related liver disease in HIV-infected patients in France (Mortavic 2001 study),” AIDS, vol. 17, no. 12, pp. 1803–1809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. CDC, 2002, http://www.cdc.gov/hiv/topics/surveillance/resources/reports/2002supp_vol8no1/figure2.htm.
  3. I. Bica, B. McGovern, R. Dhar et al., “Increasing mortality due to end-stage liver disease in patients with human immunodeficiency virus infection,” Clinical Infectious Diseases, vol. 32, no. 3, pp. 492–497, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Weber, C. A. Sabin, N. Friis-Moller et al., “Liver-related deaths in persons infected with the human immunodeficiency virus: the D:A:D study,” Archives of Internal Medicine, vol. 166, no. 15, pp. 1632–1641, 2006. View at Google Scholar
  5. J. A. Pineda, J. A. García-García, M. Aguilar-Guisado et al., “Clinical progression of hepatitis C virus-related chronic liver disease in human immunodeficiency virus-infected patients undergoing highly active antiretroviral therapy,” Hepatology, vol. 46, no. 3, pp. 622–630, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. M. Petrovic, “HIV/HCV co-infection: histopathologic findings, natural history, fibrosis, and impact of antiretroviral treatment: a review article,” Liver International, vol. 27, no. 5, pp. 598–606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Jones, J. Dunning, and M. Nelson, “HIV and hepatitis C co-infection,” International Journal of Clinical Practice, vol. 59, no. 9, pp. 1082–1087, 2005. View at Google Scholar
  8. K. E. Sherman, S. D. Rouster, R. T. Chung, and N. Rajicic, “Hepatitis C virus prevalence among patients infected with human immunodefidency virus: a cross-sectional analysis of the US Adult AIDS Clinical Trials Group,” Clinical Infectious Diseases, vol. 34, no. 6, pp. 831–837, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Bräu, E. J. Bini, A. Shahidi et al., “Prevalence of hepatitis C and coinfection with HIV among United States veterans in the New York City metropolitan area,” American Journal of Gastroenterology, vol. 97, no. 8, pp. 2071–2078, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Soto, A. Sánchez-Quijano, L. Rodrigo et al., “Human immunodeficiency virus infection modifies the natural history of chronic parenterally-acquired hepatitis C with an unusually rapid progression to cirrhosis,” Journal of Hepatology, vol. 26, no. 1, pp. 1–5, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. S. A. Santos, N. Kontorinis, and D. T. Dieterich, “Management of chronic hepatitis C virus in patients with HIV,” Current Treatment Options in Gastroenterology, vol. 8, no. 6, pp. 433–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Soriano, L. Martin-Carbonero, I. Maida, J. Garcia-Samaniego, and M. Nuñez, “New paradigms in the management of HIV and hepatitis C virus coinfection,” Current Opinion in Infectious Diseases, vol. 18, no. 6, pp. 550–560, 2005. View at Google Scholar · View at Scopus
  13. H. H. Thein, Q. Yi, G. J. Dore, and M. D. Krahn, “Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis,” AIDS, vol. 22, no. 15, pp. 1979–1991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Di Martino, P. Rufat, N. Boyer et al., “The influence of human immunodeficiency virus coinfection on chronic hepatitis C in injection drug users: a long-term retrospective cohort study,” Hepatology, vol. 34, no. 6, pp. 1193–1199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. Graham, L. R. Baden, E. Yu et al., “Influence of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis,” Clinical Infectious Diseases, vol. 33, no. 4, pp. 562–569, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Bataller and D. A. Brenner, “Liver fibrosis,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 209–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. D. C. Rockey, “Antifibrotic therapy in chronic liver disease,” Clinical Gastroenterology and Hepatology, vol. 3, no. 2, pp. 95–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. George, D. Roulot, V. E. Koteliansky, and D. M. Bissell, “In vivo inhibition of rat stellate cell activation by soluble transforming growth factor β type II receptor: a potential new therapy for hepatic fibrosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12719–12724, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Hellerbrand, B. Stefanovic, F. Giordano, E. R. Burchardt, and D. A. Brenner, “The role of TGFβ1 in initiating hepatic stellate cell activation in vivo,” Journal of Hepatology, vol. 30, no. 1, pp. 77–87, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. E. E. Powell, C. J. Edwards-Smith, J. L. Hay et al., “Host genetic factors influence disease progression in chronic hepatitis C,” Hepatology, vol. 31, no. 4, pp. 828–833, 2000. View at Google Scholar · View at Scopus
  21. J. Vlachogiannakos, A. K. W. Tang, D. Patch, and A. K. Burroughs, “Angiotensin converting enzyme inhibitors and angiotensin II antagonists as therapy in chronic liver disease,” Gut, vol. 49, no. 2, pp. 303–308, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Bataller, P. Ginès, J. M. Nicolás et al., “Angiotensin II induces contraction and proliferation of human hepatic stellate cells,” Gastroenterology, vol. 118, no. 6, pp. 1149–1156, 2000. View at Google Scholar · View at Scopus
  23. F. J. Warner, J. S. Lubel, G. W. McCaughan, and P. W. Angus, “Liver fibrosis: a balance of ACEs?” Clinical Science, vol. 113, no. 3-4, pp. 109–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Bataller, P. Sancho-Bru, P. Ginès et al., “Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II,” Gastroenterology, vol. 125, no. 1, pp. 117–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Yoshiji, R. Noguchi, Y. Ikenaka et al., “Renin-angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases,” Current Medicinal Chemistry, vol. 14, no. 26, pp. 2749–2754, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. R. M. Pereira, R. A. S. dos Santos, M. M. Teixeira et al., “The renin-angiotensin system in a rat model of hepatic fibrosis: evidence for a protective role of Angiotensin-(1–7),” Journal of Hepatology, vol. 46, no. 4, pp. 674–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Bataller, E. Gäbele, C. J. Parsons et al., “Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct-ligated rats,” Hepatology, vol. 41, no. 5, pp. 1046–1055, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Xu, S. Song, Y. Huang, and Z. Gong, “Effects of perindopril and valsartan on expression of transforming growth factor-β-Smads in experimental hepatic fibrosis in rats,” Journal of Gastroenterology and Hepatology, vol. 21, no. 8, pp. 1250–1256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Li, Y. Meng, X. S. Yang, L. F. Mi, and S. X. Cai, “ACEI attenuates the progression of CCI4-induced rat hepatic fibrogenesis by inhibiting TGF-β1, PDGF-BB, NF-κB and MMP-2,9,” World Journal of Gastroenterology, vol. 11, no. 31, pp. 4807–4811, 2005. View at Google Scholar · View at Scopus
  30. J. R. Jonsson, A. D. Clouston, Y. Ando et al., “Angiotensin-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis,” Gastroenterology, vol. 121, no. 1, pp. 148–155, 2001. View at Google Scholar · View at Scopus
  31. H. Yoshiji, S. Kuriyama, and H. Fukui, “Blockade of renin-angiotensin system in antifibrotic therapy,” Journal of Gastroenterology and Hepatology, vol. 22, no. 1, supplement, pp. S93–S95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Yoshiji, S. Kuriyama, J. Yoshii et al., “Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats,” Hepatology, vol. 34, no. 4 I, pp. 745–750, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Wei, D. Li, H. Lu et al., “Effects of angiotensin II receptor blockade on hepatic fibrosis in rats,” Chinese Journal of Hepatology, vol. 8, no. 5, pp. 302–304, 2000. View at Google Scholar · View at Scopus
  34. A. Hirose, M. Ono, T. Saibara et al., “Angiotensin II type 1 receptor blocker inhibits fibrosis in rat nonalcoholic steatohepatitis,” Hepatology, vol. 45, no. 6, pp. 1375–1381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. E. Toblli, M. C. Mũoz, G. Cao, J. Mella, L. Pereyra, and R. Mastai, “ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese zucker rats,” Obesity, vol. 16, no. 4, pp. 770–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Iwata, T. Sohda, M. Irie et al., “Angiotensin II type 1 receptor antagonist improves the prognosis in rats displaying liver cirrhosis induced by a choline-deficient diet,” Journal of Gastrointestinal and Liver Diseases, vol. 17, no. 1, pp. 21–25, 2008. View at Google Scholar · View at Scopus
  37. C. Türkay, O. Yönem, S. Arici, A. Koyuncu, and M. Kanbay, “Effect of angiotensin-converting enzyme inhibition on experimental hepatic fibrogenesis,” Digestive Diseases and Sciences, vol. 53, no. 3, pp. 789–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Kagami, W. A. Border, D. E. Miller, and N. A. Noble, “Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells,” Journal of Clinical Investigation, vol. 93, no. 6, pp. 2431–2437, 1994. View at Google Scholar · View at Scopus
  39. B. M. Brenner, M. E. Cooper, D. De Zeeuw et al., “Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy,” New England Journal of Medicine, vol. 345, no. 12, pp. 861–869, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. N. Cohn and G. Tognoni, “A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure,” New England Journal of Medicine, vol. 345, no. 23, pp. 1667–1675, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Yokohama, Y. Tokusashi, K. Nakamura et al., “Inhibitory effect of angiotensin II receptor antagonist on hepatic stellate cell activation in non-alcoholic steatohepatitis,” World Journal of Gastroenterology, vol. 12, no. 2, pp. 322–326, 2006. View at Google Scholar · View at Scopus
  42. S. Yokohama, M. Yoneda, M. Haneda et al., “Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis,” Hepatology, vol. 40, no. 5, pp. 1222–1225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Terui, T. Saito, H. Watanabe, H. Togashi, and S. Kawata, “Effect of angiotensin receptor antagonist on liver fibrosis in early stages of chronic hepatitis C,” Hepatology, vol. 36, no. 4, p. 1022, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Rimola, M. C. Londoño, G. Guevara et al., “Beneficial effect of angiotensin-blocking agents on graft fibrosis in hepatitis C recurrence after liver transplantation,” Transplantation, vol. 78, no. 5, pp. 686–691, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. K. E. Corey, N. Shah, J. Misdraji et al., “The effect of angiotensin-blocking agents on liver fibrosis in patients with hepatitis C,” Liver International, vol. 29, no. 5, pp. 748–753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Ueki, M. Koda, T. Shimizu, A. Mitsuta, T. Yamamoto, and Y. Murawaki, “Effect of an angiotensin-II type-1 receptor blocker, candesartan on hepatic fibrosis in chronic hepatitis C: a prospective study,” Hepato-Gastroenterology, vol. 56, no. 93, pp. 1100–1104, 2009. View at Google Scholar · View at Scopus
  47. C. T. Wai, J. K. Greenson, R. J. Fontana et al., “A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C,” Hepatology, vol. 38, no. 2, pp. 518–526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. R. K. Sterling, E. Lissen, N. Clumeck et al., “Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection,” Hepatology, vol. 43, no. 6, pp. 1317–1325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Vallet-Pichard, V. Mallet, and S. Pol, “FIB-4: a simple, inexpensive and accurate marker of fibrosis in HCV-infected patients,” Hepatology, vol. 44, no. 3, p. 769, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. X. Forns, S. Ampurdanès, J. M. Llovet et al., “Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model,” Hepatology, vol. 36, no. 4, pp. 986–992, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Iacobellis, A. Mangia, G. Leandro et al., “External validation of biochemical indices for noninvasive evaluation of liver fibrosis in HCV chronic hepatitis,” American Journal of Gastroenterology, vol. 100, no. 4, pp. 868–873, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. M. S. Sulkowski, R. Montes de Oca, R. Moore, and D. Thomas, “Prediction of hepatic fibrosis in HIV/HCV-infected patients: comparison of FIB-4, APRI, and the Johns Hopkins Fibrosis Index (JHFI),” in Proceedings of the 13th Conference on Retroviruses and Opportunistic Infections, 2006.
  53. M. Bourliere, G. Penaranda, C. Renou et al., “Validation and comparison of indexes for fibrosis and cirrhosis prediction in chronic hepatitis C patients: proposal for a pragmatic approach classification without liver biopsies,” Journal of Viral Hepatitis, vol. 13, no. 10, pp. 659–670, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Al-Mohri, C. Cooper, T. Murphy, and M. B. Klein, “Validation of a simple model for predicting liver fibrosis in HIV/hepatitis C virus-coinfected patients,” HIV Medicine, vol. 6, no. 6, pp. 375–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. P. J. Scheuer, “Classification of chronic viral hepatitis: a need for reassessment,” Journal of Hepatology, vol. 13, no. 3, pp. 372–374, 1991. View at Google Scholar · View at Scopus
  56. K. Ishak, A. Baptista, L. Bianchi et al., “Histological grading and staging of chronic hepatitis,” Journal of Hepatology, vol. 22, no. 6, pp. 696–699, 1995. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Y. Kim, S. K. Baik, D. H. Park et al., “Angiotensin receptor blockers are superior to angiotensin-converting enzyme inhibitors in the suppression of hepatic fibrosis in a bile duct-ligated rat model,” Journal of Gastroenterology, vol. 43, no. 11, pp. 889–896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. M. P. Manns, J. G. McHutchison, S. C. Gordon et al., “Peginterferon alfa-2b plus ribavirin compared with interferonalfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial,” Lancet, vol. 358, no. 9286, pp. 958–965, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. L. J. Jeffers, W. Cassidy, C. D. Howell, S. Hu, and K. R. Reddy, “Peginterferon alfa-2a (40 kd) and ribavirin for Black American patients with chronic HCV genotype 1,” Hepatology, vol. 39, no. 6, pp. 1702–1708, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. B. K. Abu Dayyeh, M. Yang, J. L. Dienstag, and R. T. Chung, “The effects of angiotensin blocking agents on the progression of liver fibrosis in the HALT-C Trial cohort,” Digestive Diseases and Sciences, vol. 56, no. 2, pp. 564–568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. M. L. Shiffman, A. M. Di Bisceglie, K. L. Lindsay et al., “Peginterferon alfa-2a and ribavirin in patients with chronic hepatitis C who have failed prior treatment,” Gastroenterology, vol. 126, no. 4, pp. 1015–1023, 2004. View at Publisher · View at Google Scholar · View at Scopus