Table of Contents Author Guidelines Submit a Manuscript
AIDS Research and Treatment
Volume 2013 (2013), Article ID 249171, 7 pages
http://dx.doi.org/10.1155/2013/249171
Clinical Study

Performance of Clinical Criteria for Screening of Possible Antiretroviral Related Mitochondrial Toxicity in HIV-Infected Children in Accra

1Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
2Department of Child Health, Korle Bu Teaching Hospital, University of Ghana Medical School, P.O. Box kb77, Accra, Ghana
3Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT 06520, USA
4Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA

Received 12 December 2012; Revised 31 January 2013; Accepted 11 February 2013

Academic Editor: Guido Poli

Copyright © 2013 Allison Langs-Barlow et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. UNAIDS, Global Report: UNAIDS Report on the Global AIDS Epidemic 2010, 2010.
  2. Y. E. Claessens, J. D. Chiche, J. P. Mira, and A. Cariou, “Bench-to-bedside review: severe lactic acidosis in HIV patients treated with nucleoside analogue reverse transcriptase inhibitors,” Critical Care, vol. 7, no. 3, pp. 226–232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Brogly, P. Williams, G. R. Seage, J. M. Oleske, R. Van Dyke, and K. McIntosh, “Antiretroviral treatment in pediatric HIV infection in the United States: from clinical trials to clinical practice,” Journal of the American Medical Association, vol. 293, no. 18, pp. 2213–2220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Cossarizza, L. Troiano, and C. Mussini, “Mitochondria and HIV infection: the first decade,” Journal of Biological Regulators and Homeostatic Agents, vol. 16, no. 1, pp. 18–24, 2002. View at Google Scholar · View at Scopus
  5. E. R. Feeney, C. Chazallon, N. O'Brien et al., “Hyperlactataemia in HIV-infected subjects initiating antiretroviral therapy in a large randomized study (a substudy of the INITIO trial),” HIV Medicine, vol. 12, no. 10, pp. 602–609, 2011. View at Publisher · View at Google Scholar
  6. C. Foster and H. Lyall, “HIV and mitochondrial toxicity in children,” Journal of Antimicrobial Chemotherapy, vol. 61, no. 1, pp. 8–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Hazra, G. K. Siberry, and L. M. Mofenson, “Growing up with HIV: children, adolescents, and young adults with perinatally acquired HIV infection,” Annual Review of Medicine, vol. 61, pp. 169–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. G. Montaner, H. C. F. Côté, M. Harris et al., “Mitochondrial toxicity in the era of HAART: evaluating venous lactate and peripheral blood mitochondrial DNA in HIV-infected patients taking antiretroviral therapy,” Journal of Acquired Immune Deficiency Syndromes, vol. 34, no. 1, pp. S85–S90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Morén, A. Noguera-Julian, N. Rovira et al., “Mitochondrial impact of human immunodeficiency virus and antiretrovirals on infected pediatric patients with or without lipodystrophy,” Pediatric Infectious Disease Journal, vol. 30, no. 11, pp. 992–995, 2011. View at Publisher · View at Google Scholar
  10. G. Moyle, “Clinical manifestations and management of antiretroviral nucleoside analog-related mitochondrial toxicity,” Clinical Therapeutics, vol. 22, no. 8, pp. 911–936, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. W. G. Powderly, “Long-term exposure to lifelong therapies,” Journal of Acquired Immune Deficiency Syndromes, vol. 29, supplement 1, pp. S28–S40, 2002. View at Google Scholar · View at Scopus
  12. U. A. Walker and K. Brinkman, “NRTI induced mitochondrial toxicity as a mechanism for HAART related lipodystrophy: fact or fiction?” HIV Medicine, vol. 2, no. 3, pp. 163–165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. A. J. White, “Mitochondrial toxicity and HIV therapy,” Sexually Transmitted Infections, vol. 77, no. 3, pp. 158–173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Miró, S. López, E. Martínez et al., “Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of HIV-infected patients who were never treated with antiretrovirals,” Clinical Infectious Diseases, vol. 39, no. 5, pp. 710–716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. C. F. Côté, Z. L. Brumme, K. J. P. Craib et al., “Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients,” New England Journal of Medicine, vol. 346, no. 11, pp. 811–820, 2002. View at Publisher · View at Google Scholar
  16. T. Miura, M. Goto, N. Hosoya et al., “Depletion of mitochondrial DNA in HIV-1-infected patients and its amelioration by antiretroviral therapy,” Journal of Medical Virology, vol. 70, no. 4, pp. 497–505, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J.U.N.P.o.H.A.U.a.U.N.C.F.U. World Health Organization (WHO), “Towards universal access: scaling up priority HIV/AIDS interventions in the health sector: progress report 2012,” 2010.
  18. N. I. Wolf and J. A. M. Smeitink, “Mitochondrial disorders: a proposal for consensus diagnostic criteria in infants and children,” Neurology, vol. 59, no. 9, pp. 1402–1405, 2002. View at Google Scholar · View at Scopus
  19. G. McComsey, D. J. Tan, M. Lederman, E. Wilson, and L. J. Wong, “Analysis of the mitochondrial DNA genome in the peripheral blood leukocytes of HIV-infected patients with or without lipoatrophy,” AIDS, vol. 16, no. 4, pp. 513–518, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Garrabou, C. Morén, J. M. Gallego-Escuredo et al., “Genetic and functional mitochondrial assessment of hiv-infected patients developing HAART-related hyperlactatemia,” Journal of Acquired Immune Deficiency Syndromes, vol. 52, no. 4, pp. 443–451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Morén, A. Noguera-Julian, N. Rovira et al., “Mitochondrial assessment in asymptomatic HIV-infected paediatric patients on HAART,” Antiviral Therapy, vol. 16, no. 5, pp. 719–724, 2011. View at Publisher · View at Google Scholar
  22. O. Miró, S. López, E. Pedrol et al., “Mitochondrial DNA depletion and respiratory chain enzyme deficiencies are present in peripheral blood mononuclear cells of HIV-infected patients with HAART-related lipodystrophy,” Antiviral Therapy, vol. 8, no. 4, pp. 333–338, 2003. View at Google Scholar · View at Scopus
  23. A. Maagaard, M. Holberg-Petersen, E. A. Kvittingen, L. Sandvik, and J. N. Bruun, “Depletion of mitochondrial DNA copies/cell in peripheral blood mononuclear cells in HIV-1-infected treatment-naïve patients,” HIV Medicine, vol. 7, no. 1, pp. 53–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. H. Chen, M. Vazquez-Padua, and Y. C. Cheng, “Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity,” Molecular Pharmacology, vol. 39, no. 5, pp. 625–628, 1991. View at Google Scholar · View at Scopus
  25. C. Morén, A. Noguera-Julian, G. Garrabou et al., “Mitochondrial evolution in HIV-infected children receiving first- or second-generation nucleoside analogues,” Journal of Acquired Immune Deficiency Syndromes, vol. 60, no. 2, pp. 111–116, 2012. View at Publisher · View at Google Scholar
  26. C. H. Lin, D. D. Sloan, C. H. Dang et al., “Assessment of mitochondrial toxicity by analysis of mitochondrial protein expression in mononuclear cells,” Cytometry B, vol. 76, no. 3, pp. 181–190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. S. G. Montaner, H. C. F. Côté, M. Harris et al., “Nucleoside-related mitochondrial toxicity among HIV-infected patients receiving antiretroviral therapy: insights from the evaluation of venous lactic acid and peripheral blood mitochondrial DNA,” Clinical Infectious Diseases, vol. 38, supplement 2, pp. S73–S79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Crain, M. C. Chernoff, J. M. Oleske et al., “Possible mitochondrial dysfunction and its association with antiretroviral therapy use in children perinatally infected with HIV,” Journal of Infectious Diseases, vol. 202, no. 2, pp. 291–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Blanche, M. Tardieu, P. Rustin et al., “Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues,” The Lancet, vol. 354, no. 9184, pp. 1084–1089, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. S. B. Brogly, N. Ylitalo, L. M. Mofenson et al., “In utero nucleoside reverse transcriptase inhibitor exposure and signs of possible mitochondrial dysfunction in HIV-uninfected children,” AIDS, vol. 21, no. 8, pp. 929–938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. H. Haas, S. Parikh, M. J. Falk et al., “Mitochondrial disease: a practical approach for primary care physicians,” Pediatrics, vol. 120, no. 6, pp. 1326–1333, 2007. View at Publisher · View at Google Scholar · View at Scopus