Table of Contents Author Guidelines Submit a Manuscript
AIDS Research and Treatment
Volume 2014, Article ID 636584, 7 pages
http://dx.doi.org/10.1155/2014/636584
Review Article

Etravirine as a Switching Option for Patients with HIV RNA Suppression: A Review of Recent Trials

1Chelsea and Westminster Hospital, St. Stephens Centre, London SW10 9NH, UK
2Janssen Research and Development, High Wycombe HP12 4DP, UK
3Janssen EMEA, Tilburg, The Netherlands
4Janssen EMEA, Neuss, Germany

Received 25 November 2013; Accepted 20 January 2014; Published 25 February 2014

Academic Editor: Robert R. Redfield

Copyright © 2014 Mark Nelson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. DHHS guidelines, “Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents,” Department of Health and Human Services, 2012, http://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-treatment-guidelines/37/whats-new-in-the-guidelines.
  2. M. Thompson, J. Aberg, J. Hoy et al., “Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel,” The Journal of the American Medical Association, vol. 308, no. 4, pp. 387–402, 2012. View at Publisher · View at Google Scholar
  3. European treatment guidelines, http://eacsociety.org/guidelines.
  4. S. A. Riddler, R. Haubrich, A. G. DiRienzo et al., “Class-sparing regimens for initial treatment of HIV-1 infection,” The New England Journal of Medicine, vol. 358, no. 20, pp. 2095–2106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Lennox, E. DeJesus, and D. S. Berger, “Raltegravir versus efavirenz regimens in treatment-naive HIV-1-infected patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses,” Journal of Acquired Immune Deficiency Syndromes, vol. 55, no. 1, pp. 39–48, 2010. View at Publisher · View at Google Scholar
  6. E. S. Daar, C. Tierney, M. A. Fischl et al., “Atazanavir plus ritonavir or efavirenz as part of a 3-drug regimen for initial treatment of HIV-1: a randomized trial,” Annals of Internal Medicine, vol. 154, no. 7, pp. 445–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. F. van Leth, P. Phanuphak, K. Ruxrungtham et al., “Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: a randomised open-label trial, the 2NN study,” The Lancet, vol. 363, no. 9417, pp. 1253–1263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Gathe, J. Andrade-Villanueva, S. Santiago et al., “Efficacy and safety of nevirapine extended-release once daily versus nevirapine immediate-release twice-daily in treatment-naïve HIV-1-infected patients,” Antiviral Therapy, vol. 16, no. 5, pp. 759–769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Cohen, J. M. Molina, P. Cahn et al., “Efficacy and safety of rilpivirine (TMC278) versus efavirenz at 48 weeks in treatment-naïve, HIV-1-infected patients: pooled results from the phase 3 double-blind, randomized ECHO and THRIVE trials,” Journal of Acquired Immune Deficiency Syndromes, vol. 60, no. 1, pp. 33–42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. European Medicines Agency (EMA), “Efavirenz summary of product characteristics,” http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000249/WC500058311.pdf.
  11. European Medicines Agency (EMA), “Rilpivirine (Edurant) summary of product characteristics,” http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002264/WC500118874.pdf.
  12. European Medicines Agency (EMA), “Etravirine summary of product characteristics,” http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000900/WC500034180.pdf.
  13. T. Kakuda, G. de Smedt, R. Leemans et al., “Bioavailability of etravirine 200 mg administered as a single 200 mg tablet versus two 100 mg tablets in HIV-negative, healthy volunteers,” in Proceedings of the 6th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Rome, Italy, July 2011.
  14. J. A. Muñoz-Moreno, C. R. Fumaz, M. J. Ferrer et al., “Neuropsychiatric symptoms associated with efavirenz: prevalence, correlates and management: a neurobehavioral review,” AIDS Reviews, vol. 11, no. 2, pp. 103–109, 2009. View at Google Scholar · View at Scopus
  15. B. Gazzard, A. Balkin, and A. Hill, “Analysis of neuropsychiatric adverse events during clinical trials of efavirenz in antiretroviral-naive patients: a systematic review,” AIDS Reviews, vol. 12, no. 2, pp. 67–75, 2010. View at Google Scholar · View at Scopus
  16. A. Hill, W. Sawyer, and B. Gazzard, “Effects of first-line use of nucleoside analogues, efavirenz, and ritonavir-boosted protease inhibitors on lipid levels,” HIV Clinical Trials, vol. 10, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. US Food and Drug Administration, “Efavirenz prescribing information,” http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/020972s035,021360s023lbl.pdf.
  18. World Health Organisation, “Technical update on treatment optimisation. Use of efavirenz during pregnancy. A public health perspective,” 2012, http://apps.who.int/iris/bitstream/10665/70920/1/9789241503792_eng.pdf .
  19. BHIVA guidelines, 2012, http://www.bhiva.org/documents/Guidelines/Treatment/2012/hiv1029_2.pdf.
  20. N. Ford, A. Calmy, and L. Mofenson, “Safety of efavirenz in the first trimester of pregnancy: an updated systematic review and meta-analysis,” AIDS, vol. 25, no. 18, pp. 2301–2304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Martínez, J. L. Blanco, J. A. Arnaiz et al., “Hepatotoxicity in HIV-1-infected patients receiving nevirapine-containing antiretroviral therapy,” AIDS, vol. 15, no. 10, pp. 1261–1268, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Gupta, A. Hill, A. W. Sawyer, and D. Pillay, “Emergence of drug resistance in HIV type 1-infected patients after receipt of first-line highly active antiretroviral therapy: a systematic review of clinical trials,” Clinical Infectious Diseases, vol. 47, no. 5, pp. 712–722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. The UK Collaborative Group on HIV Drug Resistance and UK CHIC Study Group, “Long term probability of detection of HIV-1 drug resistance after starting antiretroviral therapy in routine clinical practice,” AIDS, vol. 19, no. 5, pp. 487–494, 2005. View at Google Scholar · View at Scopus
  24. K. Das, A. D. Clark Jr., P. J. Lewi et al., “Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants,” Journal of Medicinal Chemistry, vol. 47, no. 10, pp. 2550–2560, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Andries, H. Azijn, T. Thielemans et al., “TMC125, a novel next-generation nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 12, pp. 4680–4686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Katlama, R. Haubrich, J. Lalezari et al., “Efficacy and safety of etravirine in treatment-experienced, HIV-1 patients: pooled 48 week analysis of two randomized, controlled trials,” AIDS, vol. 23, no. 17, pp. 2289–2300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Katlama, B. Clotet, A. Mills et al., “Efficacy and safety of etravirine at week 96 in treatment-experienced HIV type-1-infected patients in the DUET-1 and DUET-2 trials,” Antiviral Therapy, vol. 15, no. 7, pp. 1045–1052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Gazzard, C. Duvivier, C. Zagler et al., “Phase 2 double-blind, randomized trial of etravirine versus efavirenz in treatment-naive patients: 48-week results,” AIDS, vol. 25, no. 18, pp. 2249–2258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Waters, M. Fisher, A. Winston et al., “A phase IV, double-blind, multicentre, randomized, placebo-controlled, pilot study to assess the feasibility of switching individuals receiving efavirenz with continuing central nervous system adverse events to etravirine,” AIDS, vol. 25, no. 1, pp. 65–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Nguyen, A. Calmy, C. Delhumeau et al., “A randomized crossover study to compare efavirenz and etravirine treatment,” AIDS, vol. 25, no. 1, pp. 57–63, 2011. View at Publisher · View at Google Scholar
  31. P. Echeverria, A. Bonjoch, J. Puig et al., “Pilot study to assess the efficacy and safety of switching protease inhibitor to once-daily etravirine in HIV-infected subjects with viral suppression (ETRA-SWITCH STUDY),” in Proceedings of the International Conference on Antimicrobial Agents and Chemotherapy (ICAAC '11), September 2011.
  32. B. Gruzdev, A. Rakhmanova, E. Doubovskaya et al., “A randomized, double-blind, placebo-controlled trial of TMC125 as 7-day monotherapy in antiretroviral naïve, HIV-1 infected subjects,” AIDS, vol. 17, no. 17, pp. 2487–2494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Ruxrungtham, R. J. Pedro, G. H. Latiff et al., “Impact of reverse transcriptase resistance on the efficacy of TMC125 (etravirine) with two nucleoside reverse transcriptase inhibitors in protease inhibitor-naïve, nonnucleoside reverse transcriptase inhibitor-experienced patients: study TMC125-C227,” HIV Medicine, vol. 9, no. 10, pp. 883–896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Schöller-Gyüre, T. N. Kakuda, A. Raoof, G. de Smedt, and R. M. W. Hoetelmans, “Clinical pharmacokinetics and pharmacodynamics of etravirine,” Clinical Pharmacokinetics, vol. 48, no. 9, pp. 561–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. E. DeJesus, J. P. Lalezari, O. O. Osiyemi et al., “Pharmacokinetics of once-daily etravirine without and with once-daily darunavir/ritonavir in antiretroviral-naive HIV type-1-infected adults,” Antiviral Therapy, vol. 15, no. 5, pp. 711–720, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Boffito, A. Jackson, M. Lamorde et al., “Pharmacokinetics and safety of etravirine administered once or twice daily after 2 weeks treatment with efavirenz in healthy volunteers,” Journal of Acquired Immune Deficiency Syndromes, vol. 52, no. 2, pp. 222–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Schneider, N. Ktorza, S. Fourati et al., “Switch from etravirine twice daily to once daily in non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-infected patients with suppressed viremia: the Monetra study,” HIV Clinical Trials, vol. 13, no. 5, pp. 284–288, 2012. View at Publisher · View at Google Scholar
  38. Y. Yazdanpanah, C. Fagard, D. Descamps et al., “High rate of virologic suppression with raltegravir plus etravirine and darunavir/ritonavir among treatment-experienced patients infected with multidrug-resistant HIV: results of the ANRS 139 TRIO trial,” Clinical Infectious Diseases, vol. 49, no. 9, pp. 1441–1449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Imaz, S. V. del Saz, M. A. Ribas et al., “Raltegravir, etravirine, and ritonavir-boosted darunavir: a safe and successful rescue regimen for multidrug-resistant HIV-1 infection,” Journal of Acquired Immune Deficiency Syndromes, vol. 52, no. 3, pp. 382–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Scott, N. Khatib, M. Bower, B. G. Gazzard, and M. Nelson, “Etravirine use in clinical practice: 48-week data from a single-centre cohort,” Journal of the International AIDS Society, vol. 11, supplement 1, article P49, 2008. View at Google Scholar
  41. P. Monteiro, I. Perez, M. Laguno et al., “Dual therapy with etravirine plus raltegravir for virologically suppressed HIV-infected patients: a pilot study,” Journal of Antimicrobial Chemotherapy, vol. 69, no. 3, pp. 742–748, 2014. View at Publisher · View at Google Scholar
  42. R. Calin, L. Paris, A. Simon et al., “Dual raltegravir/etravirine combination in virologically suppressed HIV-1-infected patients on antiretroviral therapy,” Antiviral Therapy, vol. 17, no. 8, pp. 1601–1604, 2012. View at Publisher · View at Google Scholar
  43. S. Nozza, L. Galli, F. Visco et al., “Raltegravir, maraviroc, etravirine: an effective protease inhibitor and nucleoside reverse transcriptase inhibitor-sparing regimen for salvage therapy in HIV-infected patients with triple-class experience,” AIDS, vol. 24, no. 6, pp. 924–928, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Hill and C. Sabin, “Designing and interpreting HIV noninferiority trials in naïve and experienced patients,” AIDS, vol. 22, no. 8, pp. 913–921, 2008. View at Publisher · View at Google Scholar · View at Scopus