Table of Contents Author Guidelines Submit a Manuscript
Advances in Urology
Volume 2008 (2008), Article ID 102461, 10 pages
http://dx.doi.org/10.1155/2008/102461
Review Article

Importance and Limits of Ischemia in Renal Partial Surgery: Experimental and Clinical Research

Urology Section, CEMIC University Hospital, Buenos Aires C1431FWO, Argentina

Received 29 February 2008; Accepted 18 June 2008

Academic Editor: J. Rubio

Copyright © 2008 Fernando P. Secin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. G. Uzzo and A. C. Novick, “Nephron sparing surgery for renal tumors: indications, techniques and outcomes,” The Journal of Urology, vol. 166, no. 1, pp. 6–18, 2001. View at Publisher · View at Google Scholar
  2. A. C. Novick, “Renal hypothermia: in vivo and ex vivo,” Urologic Clinics of North America, vol. 10, no. 4, pp. 637–644, 1983. View at Google Scholar
  3. A. J. Wein, L. R. Kavoussi, A. C. Novick, A. W. Partin, and C. A. Peters, Campbell-Walsh Urology, Saunders Elsevier, Philadelphia, Pa, USA, 9th edition, 2007.
  4. S. C. Campbell, J. Fichtner, A. C. Novick et al., “Intraoperative evaluation of renal cell carcinoma: a prospective study of the role of ultrasonography and histopathological frozen sections,” The Journal of Urology, vol. 155, no. 4, pp. 1191–1195, 1996. View at Publisher · View at Google Scholar
  5. N. J. Vogelzang, P. T. Scardino, W. U. Shipley, F. M. J. Debruyne, and W. M. Linehan, Comprehensive Textbook of Genitourinary Oncology, Vol. 1, Lippincott Williams & Wilkins, New York, NY, USA, 3rd edition, 2005.
  6. D. M. Coll, B. R. Herts, W. J. Davros, R. G. Uzzo, and A. C. Novick, “Preoperative use of 3D volume rendering to demonstrate renal tumors and renal anatomy,” Radiographics, vol. 20, no. 2, pp. 431–438, 2000. View at Google Scholar
  7. J. G. Abuelo, “Normotensive ischemic acute renal failure,” The New England Journal of Medicine, vol. 357, no. 8, pp. 797–805, 2007. View at Publisher · View at Google Scholar · View at PubMed
  8. P. M. O'Connor, “Renal oxygen delivery: matching delivery to metabolic demand,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 10, pp. 961–967, 2006. View at Publisher · View at Google Scholar · View at PubMed
  9. O. Kwon, B. A. Molitoris, M. Pescovitz, and K. J. Kelly, “Urinary actin, interleukin-6, and interleukin-8 may predict sustained ARF after ischemic injury in renal allografts,” American Journal of Kidney Diseases, vol. 41, no. 5, pp. 1074–1087, 2003. View at Publisher · View at Google Scholar
  10. R. H. Thompson, S. A. Boorjian, C. M. Lohse et al., “Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy,” The Journal of Urology, vol. 179, no. 2, pp. 468–473, 2008. View at Publisher · View at Google Scholar · View at PubMed
  11. O. Kwon, W. J. Nelson, R. Sibley et al., “Backleak, tight junctions, and cell-cell adhesion in postischemic injury to the renal allograft,” Journal of Clinical Investigation, vol. 101, no. 10, pp. 2054–2064, 1998. View at Publisher · View at Google Scholar · View at PubMed
  12. J. P. Richer, H. Gibelin, M. Planet et al., “Ischemia-reperfusion injury is associated with inflammatory cell infiltration: evaluation in a pig kidney autotransplant model,” Transplantation Proceedings, vol. 32, no. 2, pp. 482–483, 2000. View at Publisher · View at Google Scholar
  13. J. H. Henriksen and H. K. Petersen, “Renal blood flow and metabolism after cold ischaemia: peroperative measurements in patients with calculi,” Clinical Physiology, vol. 4, no. 1, pp. 41–50, 1984. View at Publisher · View at Google Scholar
  14. K. K. Donnahoo, D. R. Meldrum, R. Shenkar, C.-S. Chung, E. Abraham, and A. H. Harken, “Early renal ischemia, with or without reperfusion, activates NFκB and increases TNF-α bioactivity in the kidney,” The Journal of Urology, vol. 163, no. 4, pp. 1328–1332, 2000. View at Publisher · View at Google Scholar
  15. K. K. Donnahoo, B. D. Shames, A. H. Harken, and D. R. Meldrum, “Review article: the role of tumor necrosis factor in renal ischemia-reperfusion injury,” The Journal of Urology, vol. 162, no. 1, pp. 196–203, 1999. View at Publisher · View at Google Scholar · View at PubMed
  16. K. Budde, J. Waiser, M. Ceska, A. Katalinic, M. Kürzdörfer, and H.-H. Neumayer, “Interleukin-8 expression in patients after renal transplantation,” American Journal of Kidney Diseases, vol. 29, no. 6, pp. 871–880, 1997. View at Publisher · View at Google Scholar
  17. R. L. Schmouder, R. M. Strieter, R. C. Wiggins, S. W. Chensue, and S. L. Kunkel, “In vitro and in vivo interleukin-8 production in human renal cortical epithelia,” Kidney International, vol. 41, no. 1, pp. 191–198, 1992. View at Publisher · View at Google Scholar
  18. R. Thadhani, M. Pascual, and J. V. Bonventre, “Acute renal failure,” The New England Journal of Medicine, vol. 334, no. 22, pp. 1448–1460, 1996. View at Publisher · View at Google Scholar
  19. S. Knight and E. J. Johns, “Renal functional responses to ischaemia-reperfusion injury in normotensive and hypertensive rats following non-selective and selective cyclo-oxygenase inhibition with nitric oxide donation,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 1, pp. 11–16, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. C. Huang, C. Huang, D. Hestin et al., “The effect of endothelin antagonists on renal ischaemia-reperfusion injury and the development of acute renal failure in the rat,” Nephrology Dialysis Transplantation, vol. 17, no. 9, pp. 1578–1585, 2002. View at Publisher · View at Google Scholar
  21. M. A. Newaz and A. O. Oyekan, “Vascular responses to endothelin-1, angiotensin-II, and U46619 in glycerol-induced acute renal failure,” Journal of Cardiovascular Pharmacology, vol. 38, no. 4, pp. 569–577, 2001. View at Publisher · View at Google Scholar
  22. S. Kourembanas, L. P. McQuillan, G. K. Leung, and D. V. Faller, “Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia,” Journal of Clinical Investigation, vol. 92, no. 1, pp. 99–104, 1993. View at Publisher · View at Google Scholar · View at PubMed
  23. A. Lin, C. Sekhon, B. Sekhon et al., “Attenuation of ischemia-reperfusion injury in a canine model of autologous renal transplantation,” Transplantation, vol. 78, no. 5, pp. 654–659, 2004. View at Publisher · View at Google Scholar
  24. A. Hernandez, J. A. Light, D. Y. Barhyte, M. Mabudian, and F. Gage, “Ablating the ischemia-reperfusion injury in non-heart-beating donor kidneys,” Transplantation, vol. 67, no. 2, pp. 200–206, 1999. View at Publisher · View at Google Scholar
  25. C. Chiu, K. D. Sievert, S. Dahms, and P. Bretan, Jr., “Intraoperative reperfusion blood flow predicts post warm ischemic kidney transplant survival and efficacy of perservation maneuvers,” Transplantation Proceedings, vol. 31, no. 1-2, pp. 1049–1050, 1999. View at Publisher · View at Google Scholar
  26. J. F. O'Hara, Jr., T. H. S. Hsu, J. Sprung, J. B. Cywinski, H. A. Rolin, and A. C. Novick, “The effect of dopamine on renal function in solitary partial nephrectomy surgery,” The Journal of Urology, vol. 167, no. 1, pp. 24–28, 2002. View at Google Scholar
  27. T. B. Gilbert, J. U. Hasnain, W. R. Flinn, M. P. Lilly, and M. E. Benjamin, “Fenoldopam infusion associated with preserving renal function after aortic cross-clamping for aneurysm repair,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 6, no. 1, pp. 31–36, 2001. View at Publisher · View at Google Scholar
  28. J. Cau, F. Favreau, J. P. Tillement, L. O. Lerman, T. Hauet, and J. M. Goujon, “Trimetazidine reduces early and long-term effects of experimental renal warm ischemia: a dose effect study,” Journal of Vascular Surgery, vol. 47, no. 4, pp. 852–860.e4, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. F. O. Belzer and J. H. Southard, “Principles of solid-organ preservation by cold storage,” Transplantation, vol. 45, no. 4, pp. 673–676, 1988. View at Publisher · View at Google Scholar
  30. M. A. Orvieto, K. C. Zorn, F. P. Mendiola et al., “Ischemia preconditioning does not confer resilience to warm ischemia in a solitary porcine kidney model,” Urology, vol. 69, no. 5, pp. 984–987, 2007. View at Publisher · View at Google Scholar · View at PubMed
  31. S. Pasupathy and S. Homer-Vanniasinkam, “Ischaemic preconditioning protects against ischaemia/reperfusion injury: emerging concepts,” European Journal of Vascular and Endovascular Surgery, vol. 29, no. 2, pp. 106–115, 2005. View at Publisher · View at Google Scholar · View at PubMed
  32. L. Brasile, E. Green, and C. Haisch, “Warm ex vivo perfusion prevents reperfusion injury in warm ischemically damaged kidneys,” Transplantation Proceedings, vol. 29, no. 8, pp. 3422–3423, 1997. View at Publisher · View at Google Scholar
  33. A. Hirayama, S. Nagase, A. Ueda et al., “In vivo imaging of oxidative stress in ischemia-reperfusion renal injury using electron paramagnetic resonance,” American Journal of Physiology, vol. 288, no. 3, pp. F597–F603, 2005. View at Publisher · View at Google Scholar · View at PubMed
  34. Y. Masaki, K. Kumano, T. Endo et al., “Protective effect of nicaraven against prolonged cold kidney preservation and reperfusion injury,” Transplantation Proceedings, vol. 30, no. 7, pp. 3758–3760, 1998. View at Publisher · View at Google Scholar
  35. K. Doi, Y. Suzuki, A. Nakao, T. Fujita, and E. Noiri, “Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney,” Kidney International, vol. 65, no. 5, pp. 1714–1723, 2004. View at Publisher · View at Google Scholar · View at PubMed
  36. M. Tahara, M. Nakayama, M. B. Jin et al., “A radical scavenger, edaravone, protects canine kidneys from ischemia-reperfusion injury after 72 hours of cold preservation and autotransplantation,” Transplantation, vol. 80, no. 2, pp. 213–221, 2005. View at Publisher · View at Google Scholar
  37. D. D. Baldwin, L. J. Maynes, K. A. Berger et al., “Laparoscopic warm renal ischemia in the solitary porcine kidney model,” Urology, vol. 64, no. 3, pp. 592–597, 2004. View at Publisher · View at Google Scholar · View at PubMed
  38. B. A. Laven, M. A. Orvieto, M. S. Chuang et al., “Renal tolerance to prolonged warm ischemia time in a laparoscopic versus open surgery porcine model,” The Journal of Urology, vol. 172, no. 6, part 1, pp. 2471–2474, 2004. View at Publisher · View at Google Scholar
  39. F. J. Leary, D. C. Utz, and K. G. Wakim, “Effects of continuous and intermittent renal ischemia on renal function,” Surgery Gynecology & Obstetrics, vol. 116, pp. 311–317, 1963. View at Google Scholar
  40. S. B. Bhayani, K. H. Rha, P. A. Pinto et al., “Laparoscopic partial nephrectomy: effect of warm ischemia on serum creatinine,” The Journal of Urology, vol. 172, no. 4, part 1, pp. 1264–1266, 2004. View at Publisher · View at Google Scholar
  41. O. Yossepowitch, S. E. Eggener, A. Serio et al., “Temporary renal ischemia during nephron sparing surgery is associated with short-term but not long-term impairment in renal function,” The Journal of Urology, vol. 176, no. 4, pp. 1339–1343, 2006. View at Publisher · View at Google Scholar · View at PubMed
  42. R. H. Thompson, I. Frank, C. M. Lohse et al., “The impact of ischemia time during open nephron sparing surgery on solitary kidneys: a multi-institutional study,” The Journal of Urology, vol. 177, no. 2, pp. 471–476, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. M. A. Orvieto, S. R. Tolhurst, M. S. Chuang et al., “Defining maximal renal tolerance to warm ischemia in porcine laparoscopic and open surgery model,” Urology, vol. 66, no. 5, pp. 1111–1115, 2005. View at Publisher · View at Google Scholar · View at PubMed
  44. A. Alonso, C. Fernández-Rivera, P. Villaverde et al., “Renal transplantation from non-heart-beating donors: a single-center 10-year experience,” Transplantation Proceedings, vol. 37, no. 9, pp. 3658–3660, 2005. View at Publisher · View at Google Scholar · View at PubMed
  45. M. Nishikido, M. Noguchi, S. Koga et al., “Kidney transplantation from non-heart-beating donors: analysis of organ procurement and outcome,” Transplantation Proceedings, vol. 36, no. 7, pp. 1888–1890, 2004. View at Publisher · View at Google Scholar · View at PubMed
  46. G. Kootstra, R. Wijnen, J. P. van Hooff, and C. J. van der Linden, “Twenty percent more kidneys through a non-heart beating program,” Transplantation Proceedings, vol. 23, no. 1, part 2, pp. 910–911, 1991. View at Google Scholar
  47. J. C. Bains, R. M. Sandford, N. R. Brook, S. A. Hosgood, G. R. R. Lewis, and M. L. Nicholson, “Comparison of renal allograft fibrosis after transplantation from heart-beating and non-heart-beating donors,” British Journal of Surgery, vol. 92, no. 1, pp. 113–118, 2005. View at Publisher · View at Google Scholar · View at PubMed
  48. M. A. Gok, A. A. Bhatti, J. Asher et al., “The effect of inadequate in situ perfusion in the non heart-beating donor,” Transplant International, vol. 18, no. 10, pp. 1142–1146, 2005. View at Publisher · View at Google Scholar · View at PubMed
  49. M. L. Nicholson, M. S. Metcalfe, S. A. White et al., “A comparison of the results of renal transplantation from non-heart-beating, conventional cadaveric, and living donors,” Kidney International, vol. 58, no. 6, pp. 2585–2591, 2000. View at Publisher · View at Google Scholar · View at PubMed
  50. M. M. Desai, I. S. Gill, A. P. Ramani, M. Spaliviero, L. Rybicki, and J. H. Kaouk, “The impact of warm ischaemia on renal function after laparoscopic partial nephrectomy,” BJU International, vol. 95, no. 3, pp. 377–383, 2005. View at Google Scholar
  51. G. Janetschek, “Laparoscopic partial nephrectomy for RCC: how can we avoid ischemic damage of the renal parenchyma?,” European Urology, vol. 52, no. 5, pp. 1303–1305, 2007. View at Publisher · View at Google Scholar · View at PubMed
  52. F. Porpiglia, J. Renard, M. Billia et al., “Is renal warm ischemia over 30 minutes during laparoscopic partial nephrectomy possible? One-year results of a prospective study,” European Urology, vol. 52, no. 4, pp. 1170–1178, 2007. View at Publisher · View at Google Scholar · View at PubMed
  53. C. Handley, C. Heider, G. C. Morris, Jr., and J. H. Moyer, “Renal failure—I: the effect of complete renal artery occlusion for variable periods of time as compared to exposure to sub-filtration arterial pressures below 30 mm Hg for similar periods,” Annals of Surgery, vol. 145, no. 1, pp. 41–58, 1957. View at Google Scholar
  54. L. Brasile, B. M. Stubenitsky, M. H. Booster, D. Arenada, C. Haisch, and G. Kootstra, “Hypothermia—a limiting factor in using warm ischemically damaged kidneys,” American Journal of Transplantation, vol. 1, no. 4, pp. 316–320, 2001. View at Publisher · View at Google Scholar
  55. F. Lyrdal, “The effect of surgical trauma, ischaemia and ureteral occlusion on renal blood flow and function. An experimental study in the rabbit,” Scandinavian Journal of Urology and Nephrology, pp. 1–15, 1975. View at Google Scholar
  56. J. P. Ward, “Determination of the optimum temperature for regional renal hypothermia during temporary renal ischaemia,” British Journal of Urology, vol. 47, no. 1, pp. 17–24, 1975. View at Google Scholar
  57. X. Martin, M. Da Silva, R. S. Virieux et al., “Autotransplantation of the kidney in primates: a model of renal damage to study the ischemia-reperfusion injury,” Transplantation Proceedings, vol. 29, no. 8, pp. 3428–3429, 1997. View at Publisher · View at Google Scholar
  58. C. Haisch, E. Green, and L. Brasile, “Predictors of graft outcome in warm ischemically damaged organs,” Transplantation Proceedings, vol. 29, no. 8, pp. 3424–3425, 1997. View at Publisher · View at Google Scholar
  59. F. Abukora, N. Albqami, T. Nambirajan, J. Ziegerhofer, K. Leeb, and G. Janetschek, “Long-term functional outcome of renal units after laparoscopic nephron-sparing surgery under cold ischemia,” Journal of Endourology, vol. 20, no. 10, pp. 790–793, 2006. View at Publisher · View at Google Scholar · View at PubMed
  60. E. Durand, M. D. Blaufox, K. E. Britton et al., “International Scientific Committee of Radionuclides in Nephrourology (ISCORN) consensus on renal transit time measurements,” Seminars in Nuclear Medicine, vol. 38, no. 1, pp. 82–102, 2008. View at Publisher · View at Google Scholar · View at PubMed
  61. B. Shekarriz, G. Shah, and J. Upadhyay, “Impact of temporary hilar clamping during laparoscopic partial nephrectomy on postoperative renal function: a prospective study,” The Journal of Urology, vol. 172, no. 1, pp. 54–57, 2004. View at Publisher · View at Google Scholar · View at PubMed
  62. C. J. Kane, J. A. Mitchell, M. V. Meng, J. Anast, P. R. Carroll, and M. L. Stoller, “Laparoscopic partial nephrectomy with temporary arterial occlusion: description of technique and renal functional outcomes,” Urology, vol. 63, no. 2, pp. 241–246, 2004. View at Publisher · View at Google Scholar · View at PubMed
  63. T. Kondo, H. Nakazawa, F. Ito et al., “Impact of arterial occlusion during partial nephrectomy on residual renal function: an evaluation with 99m technetium-dimercaptosuccinic acid scintigraphy,” International Journal of Urology, vol. 9, no. 8, pp. 435–440, 2002. View at Google Scholar
  64. R. H. Thompson, I. Frank, C. M. Lohse et al., “The impact of ischemia time during open nephron sparing surgery on solitary kidneys: a multi-institutional study,” The Journal of Urology, vol. 177, no. 2, pp. 471–476, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. L. Zinman and J. A. Libertino, “Revascularization of the chronic totally occluded renal artery with restoration of renal function,” The Journal of Urology, vol. 118, no. 4, pp. 517–521, 1977. View at Google Scholar
  66. A. Askari, A. C. Novick, B. H. Stewart, and R. A. Straffon, “Surgical treatment of renovascular disease in the solitary kidney: results in 43 cases,” The Journal of Urology, vol. 127, no. 1, pp. 20–22, 1982. View at Google Scholar
  67. P. SChefft, A. C. Novick, B. H. Stewart, and R. A. Straffon, “Renal revascularization in patients with total occlusion of the renal artery,” The Journal of Urology, vol. 124, no. 2, pp. 184–186, 1980. View at Google Scholar
  68. J. May, A. G. Sheil, J. Horvath, D. J. Tiller, and J. R. Johnson, “Reversal of renal failure and control of hypertension in patients with occlusion of the renal artery,” Surgery Gynecology & Obstetrics, vol. 143, no. 3, pp. 411–413, 1976. View at Google Scholar
  69. C.-Y. Hsu, C. E. McCulloch, J. Darbinian, A. S. Go, and C. Iribarren, “Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease,” Archives of Internal Medicine, vol. 165, no. 8, pp. 923–928, 2005. View at Publisher · View at Google Scholar · View at PubMed
  70. L. I. Plaine and F. Hinman, Jr., “Comparison of occlusion of the renal artery with occlusion of the entire pedicle on survival and serum creatinine levels of the rabbit,” The Journal of Urology, vol. 93, pp. 117–121, 1965. View at Google Scholar
  71. W. A. Neely and M. D. Turner, “The effect of arterial, venous, and arteriovenous occlusion on renal blood flow,” Surgery, Gynecology & Obstetrics, vol. 108, no. 6, pp. 669–672, 1959. View at Google Scholar
  72. M. A. Orvieto, K. C. Zorn, F. Mendiola et al., “Recovery of renal function after complete renal hilar versus artery alone clamping during open and laparoscopic surgery,” The Journal of Urology, vol. 177, no. 6, pp. 2371–2374, 2007. View at Publisher · View at Google Scholar · View at PubMed
  73. L. I. Plaine and F. Hinman, Jr., “Comparison of occlusion of the renal artery with occlusion of the entire pedicle on survival and serum creatinine levels of the rabbit,” Transactions of the American Association of Genito-Urinary Surgeons, vol. 56, pp. 110–114, 1964. View at Google Scholar
  74. H. K. Schirmer, “The effect of intermittent and prolonged renal artery occlusion upon respiration and anaerobic glycolysis of dog kidney,” The Journal of Urology, vol. 94, no. 5, pp. 511–513, 1965. View at Google Scholar
  75. D. H. Wilson, B. B. Barton, W. L. Parry, and L. B. Hinshaw, “Effects of intermittent versus continuous renal arterial occlusion on hemodynamics and function of the kidney,” Investigative Urology, vol. 8, no. 5, pp. 507–515, 1971. View at Google Scholar
  76. G. A. McLoughlin, M. R. Heal, and I. M. Tyrell, “An evaluation of techniques for the production of temporary renal ischemia,” British Journal of Urology, vol. 50, no. 6, pp. 371–375, 1978. View at Google Scholar
  77. F. Truss, “Advantages and disadvantages of intermittent pedicle clamping in renal preserving surgery,” British Journal of Urology, vol. 43, no. 1, pp. 35–38, 1971. View at Google Scholar
  78. F. Denardi, G. M. Borges, W. Silva, Jr. et al., “Nephron-sparing surgery for renal tumours using selective renal parenchymal clamping,” BJU International, vol. 96, no. 7, pp. 1036–1039, 2005. View at Publisher · View at Google Scholar · View at PubMed
  79. E. Huyghe, J. Nohra, B. Leobon et al., “Open partial nephrectomy with selective renal parenchymal control: a new reliable clamp,” Urology, vol. 68, no. 3, pp. 658–660, 2006. View at Publisher · View at Google Scholar · View at PubMed
  80. M. Khedis, L. Bellec, B. Leobon et al., “Partial nephrectomy by selective renal parenchymal clamping using a new clamp,” Progrès en Urologie, vol. 17, no. 1, pp. 41–44, 2007. View at Publisher · View at Google Scholar
  81. A. Mejean, B. Vogt, S. Cazin, C. Balian, J. F. Poisson, and B. Dufour, “Nephron sparing surgery for renal cell carcinoma using selective renal parenchymal clamping,” The Journal of Urology, vol. 167, no. 1, pp. 234–235, 2002. View at Publisher · View at Google Scholar
  82. F. Rodréguez-Covarrubias, B. Gabilondo, J. L. Borgen, and F. Gabilondo, “Partial nephrectomy for renal tumors using selective parenchymal clamping,” International Urology and Nephrology, vol. 39, no. 1, pp. 43–46, 2007. View at Publisher · View at Google Scholar · View at PubMed
  83. G. Verhoest, A. Manunta, K. Bensalah et al., “Laparoscopic partial nephrectomy with clamping of the renal parenchyma: initial experience,” European Urology, vol. 52, no. 5, pp. 1340–1346, 2007. View at Publisher · View at Google Scholar · View at PubMed
  84. R. B. Harvey, “Effect of temperature on function of isolated dog kidney,” American Journal of Physiology, vol. 197, no. 1, pp. 181–186, 1959. View at Google Scholar
  85. M. N. Levy, “Oxygen consumption and blood flow in the hypothermic, perfused kidney,” American Journal of Physiology, vol. 197, no. 5, pp. 1111–1114, 1959. View at Google Scholar
  86. B. E. Miles and H. C. Churchill-Davidson, “The effect of hypothermia on the renal circulation of the dog,” Anesthesiology, vol. 16, no. 2, pp. 230–234, 1955. View at Publisher · View at Google Scholar
  87. J. E. A. Wickham, N. Coe, and J. P. Ward, “100 cases of nephrolithotomy under hypothermia,” European Urology, vol. 1, no. 2, pp. 71–74, 1975. View at Google Scholar
  88. J. E. Wickham, “A simple method for regional renal hypothermia,” The Journal of Urology, vol. 99, no. 3, pp. 246–247, 1968. View at Google Scholar
  89. E. E. Nosowsky and J. J. Kaufman, “The protective action of mannitol in renal artery occlusion,” The Journal of Urology, vol. 89, pp. 295–299, 1963. View at Google Scholar
  90. B. A. Laven, K. E. Kasza, D. E. Rapp et al., “A pilot study of ice-slurry application for inducing laparoscopic renal hypothermia,” BJU International, vol. 99, no. 1, pp. 166–170, 2007. View at Publisher · View at Google Scholar · View at PubMed
  91. M. A. Orvieto, K. C. Zorn, M. B. Lyon et al., “Laparoscopic ice slurry coolant for renal hypothermia,” The Journal of Urology, vol. 177, no. 1, pp. 382–385, 2007. View at Publisher · View at Google Scholar · View at PubMed
  92. G. Janetschek, A. Abdelmaksoud, F. Bagheri, H. Al-Zahrani, K. Leeb, and M. Gschwendtner, “Laparoscopic partial nephrectomy in cold ischemia: renal artery perfusion,” The Journal of Urology, vol. 171, no. 1, pp. 68–71, 2004. View at Publisher · View at Google Scholar · View at PubMed
  93. J. Steffens, U. Humke, M. Ziegler, and S. Siemer, “Partial nephrectomy with perfusion cooling for imperative indications: a 24-year experience,” BJU International, vol. 96, no. 4, pp. 608–611, 2005. View at Publisher · View at Google Scholar · View at PubMed
  94. J. Landman, J. Rehman, C. P. Sundaram et al., “Renal hypothermia achieved by retrograde intracavitary saline perfusion,” Journal of Endourology, vol. 16, no. 7, pp. 445–449, 2002. View at Publisher · View at Google Scholar · View at PubMed
  95. D. S. Crain, C. R. Spencer, M. A. Favata, and C. L. Amling, “Transureteral saline perfusion to obtain renal hypothermia: potential application in laparoscopic partial nephrectomy,” Journal of the Society of Laparoendoscopic Surgeons, vol. 8, no. 3, pp. 217–222, 2004. View at Google Scholar
  96. K. J. Weld, S. Koziol, C. Montiglio, P. Sorenson, R. D. Cespedes, and J. T. Bishoff, “Feasibility of laparoscopic renal cooling with near-freezing saline irrigation delivered with a standard irrigator aspirator,” Urology, vol. 69, no. 3, pp. 465–468, 2007. View at Publisher · View at Google Scholar · View at PubMed
  97. V. K. Mathur and E. W. Ramsey, “Comparison of methods for preservation of renal function during ischemic renal surgery,” The Journal of Urology, vol. 129, no. 1, pp. 163–165, 1983. View at Google Scholar
  98. D. Ackermann, A. Lenzin, and R. Tscholl, “Renal hypothermia in situ. Comparison between surface and perfusion cooling concerning renal function in pigs (author's transl),” Urologe A, vol. 18, no. 1, pp. 38–43, 1979. View at Google Scholar
  99. L. V. Wagenknecht, W. Hupe, E. Buecheler, and H. Klosterhalfen, “Selective hypothermic perfusion of the kidney for intrarenal surgery,” European Urology, vol. 3, no. 2, pp. 62–68, 1977. View at Google Scholar
  100. M. Marberger and F. Eisenberger, “Regional hypothermia of the kidney: surface of transarterial perfusion of cooling? A functional study,” The Journal of Urology, vol. 124, no. 2, pp. 179–183, 1980. View at Google Scholar
  101. S. Koga, Y. Arakaki, M. Matsuoka, and C. Ohyama, “Staghorn calculi—long-term results of management,” British Journal of Urology, vol. 68, no. 2, pp. 122–124, 1991. View at Google Scholar
  102. W. Luttrop, C. E. Nelson, T. Nilsson, and T. Olin, “Study of glomerular and tubular function after in situ cooling of the kidney,” The Journal of Urology, vol. 115, no. 2, pp. 133–135, 1976. View at Google Scholar
  103. M. Marberger, R. Guenther, E. J. Mayer, and M. Wiestler, “A simple method for in situ preservation of the ischemic kidney during renal surgery,” Investigative Urology, vol. 14, no. 3, pp. 191–193, 1976. View at Google Scholar
  104. H. K. Petersen, B. Broch Moller, and H. G. Iversen, “Regional hypothermia in renal surgery for severe lithiasis,” Scandinavian Journal of Urology and Nephrology, vol. 11, no. 1, pp. 27–34, 1977. View at Google Scholar
  105. C. E. Murry, R. B. Jennings, and K. A. Reimer, “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, vol. 74, no. 5, pp. 1124–1136, 1986. View at Google Scholar
  106. A. I. Linares Quevedo, F. J. Burgos Revilla, J. J. Villafruela Sanz et al., “Comparative analysis about hemodynamic and renal blood flow effects during open versus laparoscopic nephrectomy. An experimental study,” Actas Urologicas Españolas, vol. 31, no. 4, pp. 382–393, 2007. View at Google Scholar
  107. N. Toosy, E. L. J. McMorris, P. A. Grace, and R. T. Mathie, “Ischaemic preconditioning protects the rat kidney from reperfusion injury,” BJU International, vol. 84, no. 4, pp. 489–494, 1999. View at Publisher · View at Google Scholar
  108. S. Yilmaz, T. Koken, C. Tokyol et al., “Can preconditioning reduce laparoscopy-induced tissue injury?,” Surgical Endoscopy, vol. 17, no. 5, pp. 819–824, 2003. View at Publisher · View at Google Scholar · View at PubMed
  109. E. Ates, S. Yilmaz, E. Ihtiyar, B. Yasar, and E. Karahuseyinoglu, “Preconditioning-like amelioration of erythropoietin against laparoscopy-induced oxidative injury,” Surgical Endoscopy, vol. 20, no. 5, pp. 815–819, 2006. View at Publisher · View at Google Scholar · View at PubMed
  110. A. S. Cevrioglu, S. Yilmaz, T. Koken, C. Tokyol, M. Yilmazer, and I. V. Fenkci, “Comparison of the effects of low intra-abdominal pressure and ischaemic preconditioning on the generation of oxidative stress markers and inflammatory cytokines during laparoscopy in rats,” Human Reproduction, vol. 19, no. 9, pp. 2144–2151, 2004. View at Publisher · View at Google Scholar · View at PubMed
  111. A. Çay, M. Imamoğlu, M. A. Ünsal et al., “Does anti-oxidant prophylaxis with melatonin prevent adverse outcomes related to increased oxidative stress caused by laparoscopy in experimental rat model?,” Journal of Surgical Research, vol. 135, no. 1, pp. 2–8, 2006. View at Publisher · View at Google Scholar · View at PubMed
  112. A. J. Kirsch, T. W. Hensle, D. T. Chang, M. L. Kayton, C. A. Olsson, and I. S. Sawczuk, “Renal effects of CO2 insufflation: oliguria and acute renal dysfunction in a rat pneumoperitoneum model,” Urology, vol. 43, no. 4, pp. 453–459, 1994. View at Publisher · View at Google Scholar
  113. M. Y. Lind, E. J. Hazebroek, I. M. Bajema et al., “Effect of prolonged warm ischemia and pneumoperitoneum on renal function in a rat syngeneic kidney transplantation model,” Surgical Endoscopy, vol. 20, no. 7, pp. 1113–1118, 2006. View at Publisher · View at Google Scholar · View at PubMed
  114. E. M. McDougall, T. G. Monk, J. S. Wolf, Jr. et al., “The effect of prolonged pneumoperitoneum on renal function in an animal model,” Journal of the American College of Surgeons, vol. 182, no. 4, pp. 317–328, 1996. View at Google Scholar
  115. M. D. Dunn and E. M. McDougall, “Renal physiology. Laparoscopic considerations,” Urologic Clinics of North America, vol. 27, no. 4, pp. 609–614, 2000. View at Publisher · View at Google Scholar