Table of Contents Author Guidelines Submit a Manuscript
Advances in Urology
Volume 2012, Article ID 397412, 5 pages
http://dx.doi.org/10.1155/2012/397412
Review Article

Pathogenic and Diagnostic Potential of BLCA-1 and BLCA-4 Nuclear Proteins in Urothelial Cell Carcinoma of Human Bladder

1Department of Medical Oncology, Polytechnic University of the Marche Region, 60126 Ancona, Italy
2Division of Urology, Department of Clinical and Specialist Sciences, Polytechnic University of the Marche Region, 60126 Ancona, Italy
3Section of Experimental Medicine, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy

Received 3 March 2012; Revised 13 May 2012; Accepted 1 June 2012

Academic Editor: Martin Schostak

Copyright © 2012 Matteo Santoni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Al-Sukhun and M. Hussain, “Molecular biology of transitional cell carcinoma,” Critical Reviews in Oncology/Hematology, vol. 47, no. 2, pp. 181–193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Kwak, J. H. Ku, J. Y. Park, E. Lee, S. E. Lee, and C. Lee, “Initial tumor stage and grade as a predictive factor for recurrence in patients with stage T1 grade 3 bladder cancer,” Journal of Urology, vol. 171, no. 1, pp. 149–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Mowatt, S. Zhu, M. Kilonzo et al., “Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer,” Health Technology Assessment, vol. 14, no. 4, pp. 1–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. Schwalb, H. W. Herr, and W. R. Fair, “The management of clinically unconfirmed positive urinary cytology,” Journal of Urology, vol. 150, no. 6, pp. 1751–1756, 1993. View at Google Scholar · View at Scopus
  5. H. G. Van der Poel, M. R. Van Balken, D. H. J. Schamhart et al., “Bladder wash cytology, quantitative cytology, and the qualitative BTA test in patients with superficial bladder cancer,” Urology, vol. 51, no. 1, pp. 44–50, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. H. G. Van der Poel, J. A. Witjes, P. Van Stratum, M. E. Boon, F. M. J. Debruyne, and J. A. Schalken, “Quanticyt: karyometric analysis of bladder washing for patients with superficial bladder cancer,” Urology, vol. 48, no. 3, pp. 357–364, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. P. M. J. Moonen, G. F. M. Merkx, P. Peelen, H. F. M. Karthaus, D. F. C. M. Smeets, and J. A. Witjes, “UroVysion compared with cytology and quantitative cytology in the surveillance of non-muscle-invasive bladder cancer,” European Urology, vol. 51, no. 5, pp. 1275–1280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. W. G. Van Rhijn, H. G. Van der Poel, and T. H. Van der Kwast, “Urine markers for bladder cancer surveillance: a systematic review,” European Urology, vol. 47, no. 6, pp. 736–748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Whelan, J. P. Britton, and A. C. Dowell, “Three-year follow-up of bladder tumours found on screening,” British Journal of Urology, vol. 72, no. 6, pp. 893–896, 1993. View at Google Scholar · View at Scopus
  10. R. H. Getzenberg, B. R. Konety, T. A. Oeler et al., “Bladder cancer-associated nuclear matrix proteins,” Cancer Research, vol. 56, no. 7, pp. 1690–1694, 1996. View at Google Scholar · View at Scopus
  11. B. R. Konety and R. H. Getzenberg, “Nuclear structural proteins as biomarkers of cancer,” Journal of Cellular Biochemistry, vol. 76, no. 33, pp. 183–191, 1999. View at Google Scholar · View at Scopus
  12. R. Berezney and D. S. Coffey, “Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei,” Journal of Cell Biology, vol. 73, no. 3, pp. 616–637, 1977. View at Google Scholar · View at Scopus
  13. S. J. McCready, J. Godwin, and D. W. Mason, “DNA is replicated at the nuclear cage,” Journal of Cell Science, vol. 46, pp. 365–386, 1980. View at Google Scholar · View at Scopus
  14. R. Berezney and L. A. Buchholtz, “Dynamic association of replicating DNA fragments with the nuclear matrix of regenerating liver,” Experimental Cell Research, vol. 132, no. 1, pp. 1–13, 1981. View at Google Scholar · View at Scopus
  15. E. M. Ciejek, J. L. Nordstrom, M. J. Tsai, and B. W. O'Malley, “Ribonucleic acid precursors are associated with the chick oviduct nuclear matrix,” Biochemistry, vol. 21, no. 20, pp. 4945–4953, 1982. View at Google Scholar · View at Scopus
  16. C. A. G. van Eekelen and W. J. Van Venrooij, “hnRNA and its attachment to a nuclear protein matrix,” Journal of Cell Biology, vol. 88, no. 3, pp. 554–563, 1981. View at Google Scholar · View at Scopus
  17. M. Berrios, N. Osheroff, and P. A. Fisher, “In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 12, pp. 4142–4146, 1985. View at Google Scholar · View at Scopus
  18. D. J. Hakes and R. Berezney, “DNA binding properties of the nuclear matrix and individual nuclear matrix proteins: evidence for salt-resistant DNA binding sites,” Journal of Biological Chemistry, vol. 266, no. 17, pp. 11131–11140, 1991. View at Google Scholar · View at Scopus
  19. F. Tramontano, S. Di Meglio, and P. Quesada, “Co-localization of poly(ADPR)polymerase 1 (PARP-1) poly(ADPR)polymerase 2 (PARP-2) and related proteins in rat testis nuclear matrix defined by chemical cross-linking,” Journal of Cellular Biochemistry, vol. 94, no. 1, pp. 58–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. K. L. Dunn and J. R. Davie, “The many roles of the transcriptional regulator CTCF,” Biochemistry and Cell Biology, vol. 81, no. 3, pp. 161–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. E. M. Klenova, R. H. Nicolas, H. F. Paterson et al., “CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms,” Molecular and Cellular Biology, vol. 13, no. 12, pp. 7612–7624, 1993. View at Google Scholar · View at Scopus
  22. M. Klar, E. Stellamanns, P. Ak, A. Gluch, and J. Bode, “Dominant genomic structures: detection and potential signal functions in the interferon-beta domain,” Gene, vol. 364, no. 1-2, pp. 79–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. C. H. Yang, E. J. Lambie, and M. Snyder, “NuMA: an unusually long coiled-coil related protein in the mammalian nucleus,” Journal of Cell Biology, vol. 116, no. 6, pp. 1303–1317, 1992. View at Google Scholar · View at Scopus
  24. M. A. Mancini, D. He, I. I. Ouspenski et al., “Dynamic continuity of nuclear and mitotic matrix proteins in the cell cycle,” Journal of Cellular Biochemistry, vol. 62, pp. 158–164, 1996. View at Google Scholar
  25. M. Hoffman, “The cell's nucleus shapes up,” Science, vol. 259, no. 5099, pp. 1257–1259, 1993. View at Google Scholar · View at Scopus
  26. S. K. Keesee, J. V. Briggman, G. Thill, and Y. J. Wu, “Utilization of nuclear matrix proteins for cancer diagnosis,” Critical Reviews in Eukaryotic Gene Expression, vol. 6, no. 2-3, pp. 189–214, 1996. View at Google Scholar · View at Scopus
  27. J. Landman, Y. Chang, E. Kavaler, M. J. Droller, and B. C. S. Liu, “Sensitivity and specificity of NMP-22, telomerase, and BTA in the detection of human bladder cancer,” Urology, vol. 52, no. 3, pp. 398–402, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Poulakis, U. Witzsch, R. De Vries, H. M. Altmannsberger, M. J. Manyak, and E. Becht, “A comparison of urinary nuclear matrix protein-22 and bladder tumour antigen tests with voided urinary cytology in detecting and following bladder cancer: the prognostic value of false-positive results,” BJU International, vol. 88, no. 7, pp. 692–701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Eissa, M. Swellam, M. Sadek et al., “Comparative evaluation of the nuclear matrix protein, fibronectin, urinary bladder cancer antigen and voided urine cytology in the detection of bladder tumors,” Journal of Urology, vol. 168, no. 2, pp. 465–469, 2002. View at Google Scholar · View at Scopus
  30. M. G. Friedrich, A. Hellstern, S. H. Hautmann et al., “Clinical use of urinary markers for the detection and prognosis of bladder carcinoma: a comparison of immunocytology with monoclonal antibodies against Lewis X and 486p3/12 with the BTA Stat and NMP22 tests,” Journal of Urology, vol. 168, no. 2, pp. 470–474, 2002. View at Google Scholar · View at Scopus
  31. L. E. Ponsky, S. Sharma, L. Pandrangi et al., “Screening and monitoring for bladder cancer: refining the use of NMP22,” Journal of Urology, vol. 166, no. 1, pp. 75–78, 2001. View at Google Scholar · View at Scopus
  32. S. Ramakumar, J. Bhuiyan, J. A. Besse et al., “Comparison of screening methods in the detection of bladder cancer,” Journal of Urology, vol. 161, no. 2, pp. 388–394, 1999. View at Google Scholar · View at Scopus
  33. U. Hasholzner, P. Stieber, A. Zimmermann et al., “Nuclear mitotic apparatus protein (NuMA) in benign and malignant diseases,” Anticancer Research, vol. 19, no. 4, pp. 2415–2420, 1999. View at Google Scholar · View at Scopus
  34. Y. Kagebayashi, K. Yoshida, T. Kitauchi et al., “Nuclear matrix protein 22 levels in patients with renal transplantation,” Japanese Journal of Urology, vol. 89, no. 9, pp. 774–779, 1998. View at Google Scholar · View at Scopus
  35. T. Ishiguro, M. Nakajima, M. Naito, T. Muto, and T. Tsuruo, “Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials,” Cancer Research, vol. 56, no. 4, pp. 875–879, 1996. View at Google Scholar · View at Scopus
  36. T. Ishiguro, H. Nagawa, M. Naito, and T. Tsuruo, “Analysis of novel metastasis-associated gene TI-227,” Japanese Journal of Cancer Research, vol. 91, no. 4, pp. 390–394, 2000. View at Google Scholar · View at Scopus
  37. J. M. Myers-Irvin, D. Landsittel, and R. H. Getzenberg, “Use of the novel marker BLCA-1 for the detection of bladder cancer,” Journal of Urology, vol. 174, no. 1, pp. 64–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. T. S. Van Le, J. Myers, B. R. Konety, T. Barder, and R. H. Getzenberg, “Functional characterization of the bladder cancer marker, BLCA-4,” Clinical Cancer Research, vol. 10, no. 4, pp. 1384–1391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Oikawa, “ETS transcription factors: possible targets for cancer therapy,” Cancer Science, vol. 95, no. 8, pp. 626–633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Buchwalter, C. Gross, and B. Wasylyk, “Ets ternary complex transcription factors,” Gene, vol. 324, no. 1-2, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Myers-Irvin, T. S. Van Le, and R. H. Getzenberg, “Mechanistic analysis of the role of BLCA-4 in bladder cancer pathobiology,” Cancer Research, vol. 65, no. 16, pp. 7145–7150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. G. N. Thalmann, B. Dewald, M. Baggiolini, and U. E. Studer, “Interleukin-8 expression in the urine after bacillus Calmette-Guerin therapy: a potential prognostic factor of tumor recurrence and progression,” Journal of Urology, vol. 158, no. 4, pp. 1340–1344, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Chikazawa, K. Inoue, S. Fukata, T. Karashima, and T. Shuin, “Expression of angiogenesis-related genes regulates different steps in the process of tumor growth and metastasis in human urothelial cell carcinoma of the urinary bladder,” Pathobiology, vol. 75, no. 6, pp. 335–345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. B. M. Mian, C. P. N. Dinney, C. E. Bermejo et al., “Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-κB,” Clinical Cancer Research, vol. 9, no. 8, pp. 3167–3175, 2003. View at Google Scholar · View at Scopus
  45. S. Tseng-Rogenski and M. Liebert, “Interleukin-8 is essential for normal urothelial cell survival,” American Journal of Physiology, vol. 297, no. 3, pp. F816–F821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. D. K. Ahirwar, A. Mandhani, and R. D. Mittal, “IL-8 -251 T > a polymorphism is associated with bladder cancer susceptibility and outcome after BCG immunotherapy in a Northern indian cohort,” Archives of Medical Research, vol. 41, no. 2, pp. 97–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Escudero-Lourdes, T. Wu, J. M. Camarillo et al., “Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells,” Toxicology and Applied Pharmacology, vol. 258, pp. 10–18, 2012. View at Google Scholar
  48. C. Feng, M. Guan, Q. Ding et al., “Expression of pigment epithelium-derived factor in bladder tumour is correlated with interleukin-8 yet not with interleukin-1α,” Journal of Huazhong University of Science and Technology, vol. 31, no. 1, pp. 21–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Seddighzadeh, P. Larsson, A. C. Ulfgren et al., “Low IL-1α expression in bladder cancer tissue and survival,” European Urology, vol. 43, no. 4, pp. 362–368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. C. T. Esmon, “Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface,” The FASEB Journal, vol. 9, no. 10, pp. 946–955, 1995. View at Google Scholar · View at Scopus
  51. E. M. Conway, M. Van de Wouwer, S. Pollefeyt et al., “The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor κB and mitogen-activated protein kinase pathways,” Journal of Experimental Medicine, vol. 196, no. 5, pp. 565–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. C. T. Esmon and W. G. Owen, “The discovery of thrombomodulin,” Journal of Thrombosis and Haemostasis, vol. 2, no. 2, pp. 209–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. H. C. Huang, G. Y. Shi, S. J. Jiang et al., “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” Journal of Biological Chemistry, vol. 278, no. 47, pp. 46750–46759, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. R. D. Rosenberg and J. S. Rosenberg, “Natural anticoagulant mechanisms,” Journal of Clinical Investigation, vol. 74, no. 1, pp. 1–6, 1984. View at Google Scholar · View at Scopus
  55. B. R. Konety, T. S. T. Nguyen, R. Dhir et al., “Detection of bladder cancer using a novel nuclear matrix protein, BLCA-4,” Clinical Cancer Research, vol. 6, no. 7, pp. 2618–2625, 2000. View at Google Scholar · View at Scopus
  56. T.-S. Van Le, R. Miller, T. Barder, M. Babjuk, D. M. Potter, and R. H. Getzenberg, “Highly specific urine-based marker of bladder cancer,” Urology, vol. 66, no. 6, pp. 1256–1260, 2005. View at Publisher · View at Google Scholar · View at Scopus