Table of Contents Author Guidelines Submit a Manuscript
Advances in Urology
Volume 2013 (2013), Article ID 401750, 6 pages
Review Article

Wt-1 Expression Linked to Nitric Oxide Availability during Neonatal Obstructive Nephropathy

1Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500, Mendoza, Argentina
2National Council of Scientific and Technical Research of Argentina (IMBECU-CONICET), CP 5500, Mendoza, Argentina

Received 30 July 2013; Revised 27 September 2013; Accepted 30 September 2013

Academic Editor: M. Hammad Ather

Copyright © 2013 Luciana Mazzei and Walter Manucha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The wt-1 gene encodes a zinc finger DNA-binding protein that acts as a transcriptional activator or repressor depending on the cellular or chromosomal context. The wt-1 regulates the expression of a large number of genes that have a critical role in kidney development. Congenital obstructive nephropathy disrupts normal renal development and causes chronic progressive interstitial fibrosis, which contributes to renal growth arrest, ultimately leading to chronic renal failure. Wt-1 is downregulated during congenital obstructive nephropathy, leading to apoptosis. Of great interest, nitric oxide bioavailability associated with heat shock protein 70 (Hsp70) interaction may modulate wt-1 mRNA expression, preventing obstruction-induced cell death during neonatal unilateral ureteral obstruction. Moreover, recent genetic researches have allowed characterization of many of the complex interactions among the individual components cited, but the realization of new biochemical, molecular, and functional experiments as proposed in our and other research labs allows us to establish a deeper level of commitment among proteins involved and the potential pathogenic consequences of their imbalance.