Table of Contents Author Guidelines Submit a Manuscript
Advances in Urology
Volume 2014, Article ID 184602, 6 pages
http://dx.doi.org/10.1155/2014/184602
Research Article

IL1RN and KRT13 Expression in Bladder Cancer: Association with Pathologic Characteristics and Smoking Status

1Department of Urology, Mannheim Medical Center, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
2Department for Statistical Analysis, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany

Received 27 February 2014; Revised 23 June 2014; Accepted 26 June 2014; Published 8 July 2014

Academic Editor: Matthew Nielsen

Copyright © 2014 Thomas S. Worst et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer Journal for Clinicians, vol. 63, no. 1, pp. 11–30, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Letasiova, A. Medvedova, A. Sovcikova et al., “Bladder cancer, a review of the environmental risk factors,” Environmental Health, vol. 11, supplement 1, article S11, 2012. View at Publisher · View at Google Scholar
  3. M. Burger, J. W. F. Catto, G. Dalbagni et al., “Epidemiology and risk factors of urothelial bladder cancer,” European Urology, vol. 63, no. 2, pp. 234–241, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Pelucchi, C. Bosetti, E. Negri, M. Malvezzi, and C. La Vecchia, “Mechanisms of disease: the epidemiology of bladder cancer,” Nature Reviews Urology, vol. 3, no. 6, pp. 327–340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. N. D. Freedman, D. T. Silverman, A. R. Hollenbeck, A. Schatzkin, and C. C. Abnet, “Association between smoking and risk of bladder cancer among men and women,” JAMA—Journal of the American Medical Association, vol. 306, no. 7, pp. 737–745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. H. Seyler and J. T. Bernert, “Analysis of 4-aminobiphenyl in smoker's and nonsmoker's urine by tandem mass spectrometry,” Biomarkers, vol. 16, no. 3, pp. 212–221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Tao, B. W. Day, B. Hu et al., “Elevated 4-aminobiphenyl and 2,6-dimethylaniline hemoglobin adducts and increased risk of bladder cancer among lifelong nonsmokers-the shanghai bladder cancer study,” Cancer Epidemiology Biomarkers and Prevention, vol. 22, no. 5, pp. 937–945, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Brody, “Transcriptome alterations induced by cigarette smoke,” International Journal of Cancer, vol. 131, no. 12, pp. 2754–2762, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Lee and J. P. Cooke, “Nicotine and pathological angiogenesis.,” Life Sciences, vol. 91, no. 21-22, pp. 1058–1064, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Gabriel, L. Li, C. Bolenz et al., “New insights into the influence of cigarette smoking on urothelial carcinogenesis: smoking-induced gene expression in tumor-free urothelium might discriminate muscle-invasive from nonmuscle-invasive urothelial bladder cancer,” Molecular Carcinogenesis, vol. 51, no. 11, pp. 907–915, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Moll, W. W. Franke, D. L. Schiller, B. Geiger, and R. Krepler, “The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells,” Cell, vol. 31, no. 1, pp. 11–24, 1982. View at Publisher · View at Google Scholar · View at Scopus
  12. W. P. Arend and C. Gabay, “Physiologic role of interleukin-1 receptor antagonist,” Arthritis Research, vol. 2, no. 4, pp. 245–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Yamada, H. Sasaki, K. Aoyagi et al., “Expression of cytokeratin 7 predicts survival in stage I/IIA/IIB squamous cell carcinoma of the esophagus,” Oncology Reports, vol. 20, no. 5, pp. 1021–1027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. D. Mertz, F. Demichelis, A. Sboner et al., “Association of cytokeratin 7 and 19 expression with genomic stability and favorable prognosis in clear cell renal cell cancer,” International Journal of Cancer, vol. 123, no. 3, pp. 569–576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. E. Celis, M. Østergaard, B. Basse et al., “Loss of adipocyte-type fatty acid binding protein and other protein biomarkers is associated with progression of human bladder transitional cell carcinomas,” Cancer Research, vol. 56, no. 20, pp. 4782–4790, 1996. View at Google Scholar · View at Scopus
  16. R. Moll, T. Achtstatter, E. Becht, J. Balcarova-Stander, M. Ittensohn, and W. W. Franke, “Cytokeratins in normal and malignant transitional epithelium. Maintenance of expression of urothelial differentiation features in transitional cell carcinomas and bladder carcinoma cell culture lines,” American Journal of Pathology, vol. 132, no. 1, pp. 123–144, 1988. View at Google Scholar · View at Scopus
  17. H. E. Schaafsma, F. C. S. Ramaekers, G. N. P. van Muijen et al., “Distribution of cytokeratin polypeptides in human transitional cell carcinomas, with special emphasis on changing expression patterns during tumor progression,” American Journal of Pathology, vol. 136, no. 2, pp. 329–343, 1990. View at Google Scholar · View at Scopus
  18. J. Southgate, P. Harnden, and L. K. Trejdosiewicz, “Cytokeratin expression patterns in normal and malignant urothelium: a review of the biological and diagnostic implications,” Histology and Histopathology, vol. 14, no. 2, pp. 657–664, 1999. View at Google Scholar · View at Scopus
  19. C. J. Marsit, E. A. Houseman, B. C. Christensen et al., “Identification of methylated genes associated with aggressive bladder cancer,” PLoS ONE, vol. 5, no. 8, Article ID e12334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. D. Craene and G. Berx, “Regulatory networks defining EMT during cancer initiation and progression,” Nature Reviews Cancer, vol. 13, no. 2, pp. 97–110, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Dave, V. Mittal, N. M. Tan, and J. C. Chang, “Epithelial-mesenchymal transition, cancer stem cells and treatment resistance,” Breast Cancer Research, vol. 14, no. 1, article 202, 2012. View at Google Scholar · View at Scopus
  22. G. van der Horst, L. Bos, and G. van der Pluijm, “Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma,” Molecular Cancer Research, vol. 10, no. 8, pp. 995–1009, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. Bolton, K. Pinnion, V. Oreffo, M. Foster, and K. E. Pinkerton, “Characterisation of the proximal airway squamous metaplasia induced by chronic tobacco smoke exposure in spontaneously hypertensive rats,” Respiratory Research, vol. 10, article 118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. K. Schlage, H. Bülles, D. Friedrichs, M. Kuhn, A. Teredesai, and P. M. Terpstra, “Cytokeratin expression patterns in the rat respiratory tract as markers of epithelial differentiation in inhalation toxicology. II. Changes in cytokeratin expression patterns following 8-day exposure to room-aged cigarette sidestream smoke,” Toxicologic Pathology, vol. 26, no. 3, pp. 344–360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. C. A. Dinarello, A. Simon, and J. W. M. Van Der Meer, “Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases,” Nature Reviews Drug Discovery, vol. 11, no. 8, pp. 633–652, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Lewis, S. Varghese, H. Xu, and H. R. Alexander, “Interleukin-1 and cancer progression: The emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment,” Journal of Translational Medicine, vol. 4, article 48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Mertens and J. A. Singh, “Anakinra for rheumatoid arthritis: a systematic review,” Journal of Rheumatology, vol. 36, no. 6, pp. 1118–1125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. G. D. Kalliolias and S. C. Liossis, “The future of the IL-1 receptor antagonist anakinra: from rheumatoid arthritis to adult-onset still's disease and systemic-onset juvenile idiopathic arthritis,” Expert Opinion on Investigational Drugs, vol. 17, no. 3, pp. 349–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Zhang, C. Liu, H. Peng, J. Zhang, and Q. Feng, “IL1 receptor antagonist gene IL1-RN variable number of tandem repeats polymorphism and cancer risk: a literature review and meta-analysis,” PLoS ONE, vol. 7, no. 9, Article ID e46017, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Lindmark, S. L. Zheng, F. Wiklund et al., “Interleukin-1 receptor antagonist haplotype associated with prostate cancer risk,” British Journal of Cancer, vol. 93, no. 4, pp. 493–497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. H. K. Bid, P. K. Manchanda, and R. D. Mittal, “Association of interleukin-1Ra gene polymorphism in patients with bladder cancer: case control study from North India,” Urology, vol. 67, no. 5, pp. 1099–1104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. D. K. Ahirwar, A. Agrahari, A. Mandhani, and R. D. Mittal, “Cytokine gene polymorphisms are associated with risk of urinary bladder cancer and recurrence after BCG immunotherapy,” Biomarkers, vol. 14, no. 4, pp. 213–218, 2009. View at Publisher · View at Google Scholar · View at Scopus