Advances in Virology
 Journal metrics
Acceptance rate14%
Submission to final decision45 days
Acceptance to publication23 days
CiteScore1.970
Impact Factor-
 Submit

Molecular Diagnosis of Pneumonia Using Multiplex Real-Time PCR Assay RespiFinder® SMART 22 FAST in a Group of Moroccan Infants

Read the full article

 Journal profile

Advances in Virology publishes articles in all aspect of viruses and viral diseases. Topics covered include viral structure, function, and genetics, as well as virus-host interactions, viral disease outbreaks, and antiviral therapeutics.

 Editor spotlight

Advances in Virology maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Inhibitory Activity of Illicium verum Extracts against Avian Viruses

This study aimed at screening the inhibitory activity of Illicium verum extracts against avian reovirus, infectious bursal disease virus (IBDV), Newcastle disease virus (NDV), and infectious laryngotracheitis virus (ILTV). The cytotoxic and antiviral actions of 3 extracts, absolute methanol (100MOH), 50% methanol (50MOH), and aqueous extracts (WA.), were evaluated by MTT assay. The Illicium verum extracts were added to the cultured chick embryo fibroblast (CEF) with tested viruses in three attacks, preinoculation, postinoculation, and simultaneous inoculation. The three extracts showed antiviral inhibitory activity against all tested viruses during simultaneous inoculation and preinoculation except 100MOH and 50MOH that showed no effect against IBDV, thereby suggesting that the extracts have a preventive effect on CEF against viruses. During postinoculation, the extracts exhibited inhibitory effects against NDV and avian reovirus, while no effect against IBDV recorded and only the 100MOH showed an inhibitory effect against ILTV. The initial results of this study suggest that Illicium verum may be a candidate for a natural alternative source for antiviral agents.

Research Article

Comparison of the Immunogenicity and Safety of Two Pediatric TBE Vaccines Based on the Far Eastern and European Virus Subtypes

Up to 10,000 cases of tick-borne encephalitis are registered annually, 20% of which occur in children under 17 years of age. A comparison of the immunogenicity and safety between a new pediatric Tick-E-Vac vaccine based on the TBEV strain Sofjin and FSME-IMMUN Junior vaccine was performed in the Sverdlovsk region. The vaccine strains differ from strains of the Siberian subtype of TBEV that dominates in the region. The study was performed on 163 children aged 1 to 15, who received one of the vaccines according to either a conventional or rapid vaccination schedule. Immunogenicity was assessed based on the seroprotection rates and titers of virus-neutralizing antibodies. There were no significant differences in either the immunogenicity or reactogenicity of the pediatric vaccines based on strains of the Far Eastern or European subtypes of TBEV. Under both vaccination schedules, 30 days after the second injection, seroprotection rates were 100% for Tick-E-Vac and greater than 95% for FSME-IMMUN Junior, while the geometric mean titer of TBEV-neutralizing antibodies was at least 2,4 log10 (1 : 250) for either vaccine. Fourteen days after the second injection according to the rapid schedule, seroprotection rates were significantly lower, ranging from 50% to 63% regardless of the vaccine used. The observed adverse reactions were mild or moderate for both vaccines under both vaccination schedules, with total adverse event rates of less than 25%. Reactogenicity was not associated with the gender or age of the recipients. There were no statistically significant differences in the incidence of adverse reactions between the group of subjects who were baseline seronegative or seropositive. However, 14 days after the second vaccine injection according to the rapid schedule, a statistically significant difference in nAbs titers was identified between groups of children with and without reported reactions.

Research Article

Analysis of Nucleotide Alterations in the E6 Genomic Region of Human Papillomavirus Types 6 and 11 in Condyloma Acuminatum Samples from Brazil

Condyloma acuminata (CA), or genital warts, are benign proliferative epidermal or mucous lesions that are caused by infection with human papillomavirus (HPV), mainly the low-risk types 6 and 11. HPV variants are defined as viral sequences that share identity in the nucleotide sequence of the L1 gene greater than 98%. Based on this criterion, HPV6 and 11 variant lineages have been studied, and there are ongoing attempts to correlate these genetic variants with different clinical findings of infection. Therefore, the aims of this study were to detect variants and nucleotide alterations present in the E6 regions of HPV types 6 and 11 found in CA samples, to correlate the HPV presence with the clinical-pathological data of the patients, and to determine phylogenetic relationships with variants from other places in the world. The E6 regions of 25 HPV6 samples and 7 HPV11 samples from CA were amplified using PCR with specific primers. The products were ligated to a cloning vector and five colonies of each sample were sequenced to observe the nucleotide alterations. Twelve samples were identified as the HPV6B3 variant, presenting the mutation (guanine) G474A (adenine), and one of them also showed the mutation (thymine) T369G. The other 13 patients were positive for HPV6B1 without nucleotide alterations. In the analysis of the HPV11 samples, all patients showed the mutations T137C and (cytosine) C380T. One patient also presented the nucleotide alteration T410C. None of the mutations found in the 32 analyzed samples resulted in amino acid changes. Patient age, local occurrence, and HIV infection did not show significant association with HPV infection. Besides, the data found in this study did not show a relationship with the geographical region of isolation when compared to other data from different regions of the world. In this way, despite the nucleotide alterations found, it was not possible to observe amino acid changes and variants grouping according to geographical region.

Research Article

Molecular Characterization of African Swine Fever Viruses from Outbreaks in Peri-Urban Kampala, Uganda

African swine fever (ASF) is an infectious transboundary disease of domestic pigs and wild swine and is currently the most serious constraint to piggery in Uganda. The causative agent of ASF is a large double-stranded linear DNA virus with a complex structure. There are twenty-four ASFV genotypes described to date; however, in Uganda, only genotypes IX and X have been previously described. Inadequate ASF outbreak investigation has contributed to the delayed establishment of effective interventions to aid the control of ASF. Continuous virus characterization enhances the understanding of ASF epidemiology in terms of viral genome variations, extent, severity, and the potential source of the viruses responsible for outbreaks. We collected samples from pigs that had died of a hemorrhagic disease indicative of ASF. DNA was extracted from all samples and screened with the OIE recommended diagnostic PCR for ASF. Partial B646L (p72), full-length E183L (p54) genes, and CVR region of the P72 gene were amplified, purified, and sequenced. Web-based BLAST and MEGA X software were used for sequence analysis. ASF was confirmed in 10 of the 15 suspected pig samples. Phylogenetic analysis confirmed circulation of genotype IX by both full-length E183 (p54) and partial B646L (p72) gene sequencing. Intragenotypic resolution of the CVR region revealed major deletions in the virus genome, in some isolates of this study. The marked reduction in the number of tetrameric tandem repeats in some isolates of this study could potentially play a role in influencing the virulence of this particular genotype IX in Uganda.

Research Article

Epstein-Barr Virus- (EBV-) Immortalized Lymphoblastoid Cell Lines (LCLs) Express High Level of CD23 but Low CD27 to Support Their Growth

Epstein-Barr virus (EBV) is one of the common human herpesvirus types in the world. EBV is known to infect more than 95% of adults in the world. The virus mainly infects B lymphocytes and could immortalize and transform the cells into EBV-bearing lymphoblastoid cell lines (LCLs). Limited studies have been focused on characterizing the surface marker expression of the immortalized LCLs. This study demonstrates the generation of 15 LCLs from sixteen rheumatoid arthritis (RA) patients and a healthy volunteer using B95-8 marmoset-derived EBV. The success rate of LCL generation was 88.23%. All CD19+ LCLs expressed CD23 (16.94-58.9%) and CD27 (15.74-80.89%) on cell surface. Our data demonstrated two distinct categories of LCLs (fast- and slow-growing) (p<0.05) based on their doubling time. The slow-growing LCLs showed lower CD23 level (35.28%) compared to fast-growing LCLs (42.39%). In contrast, the slow-growing LCLs showed higher percentage in both CD27 alone and CD23+CD27+ in combination. Overall, these findings may suggest the correlations of cellular CD23 and CD27 expression with the proliferation rate of the generated LCLs. Increase expression of CD23 may play a role in EBV immortalization of B-cells and the growth and maintenance of the EBV-transformed LCLs while CD27 expression might have inhibitory effects on LCL proliferation. Further investigations are warranted to these speculations.

Research Article

Poly-ADP Ribosyl Polymerase 1 (PARP1) Regulates Influenza A Virus Polymerase

Influenza A viruses (IAV) are evolutionarily successful pathogens, capable of infecting a number of avian and mammalian species and responsible for pandemic and seasonal epidemic disease in humans. To infect new species, IAV typically must overcome a number of species barriers to entry, replication, and egress, even while virus replication is counteracted by antiviral host factors and innate immune mechanisms. A number of host factors have been found to regulate the replication of IAV by interacting with the viral RNA-dependent RNA polymerase (RdRP). The host factor PARP1, a poly-ADP ribosyl polymerase, was required for optimal functions of human, swine, and avian influenza RdRP in human 293T cells. In IAV infection, PARP1 was required for efficient synthesis of viral nucleoprotein (NP) in human lung A549 cells. Intriguingly, pharmacological inhibition of PARP1 enzymatic activity (PARylation) by 4-amino-1,8-naphthalimide led to a 4-fold increase in RdRP activity, and a 2.3-fold increase in virus titer. Exogenous expression of the natural PARylation inhibitor PARG also enhanced RdRP activity. These data suggest a virus-host interaction dynamic where PARP1 protein itself is required, but cellular PARylation has a distinct suppressive modality, on influenza A viral polymerase activity in human cells.

Advances in Virology
 Journal metrics
Acceptance rate14%
Submission to final decision45 days
Acceptance to publication23 days
CiteScore1.970
Impact Factor-
 Submit

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.