Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2011, Article ID 165871, 13 pages
http://dx.doi.org/10.1155/2011/165871
Research Article

Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

1Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
2Pharmazentrum Universität Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
3Swiss National Center for Retroviruses, Institute for Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
4Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, P.O. Box 2543, CH-4002 Basel, Switzerland
5Département de Pédiatrie, Hôpital des Enfants HUG, CH-1211 Genève, Switzerland

Received 13 February 2011; Revised 23 May 2011; Accepted 6 June 2011

Academic Editor: George K. Lewis

Copyright © 2011 Mouhssin Oufir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Kalkut, “Antiretroviral therapy: an update for the non-AIDS specialist,” Current Opinion in Oncology, vol. 17, no. 5, pp. 479–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. T. Wild, D. C. Shugars, T. K. Greenwell, C. B. McDanal, and T. J. Matthews, “Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9770–9774, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Kilby, S. Hopkins, T. M. Venetta et al., “Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry,” Nature Medicine, vol. 4, no. 11, pp. 1302–1307, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. Rao, S. Hu, L. McHugh et al., “Toward a live microbial microbicide for HIV: commensal bacteria secreting an HIV fusion inhibitor peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 11993–11998, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. D. M. Eckert and P. S. Kim, “Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11187–11192, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. E. Bianchi, M. Finotto, P. Ingallinella et al., “Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors of viral infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 36, pp. 12903–12908, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. Babaahmady, W. Oehlmann, M. Singh, and T. Lehner, “Inhibition of human immunodeficiency virus type 1 infection of human CD4+ T cells by microbial HSP70 and the peptide epitope 407–426,” Journal of Virology, vol. 81, no. 7, pp. 3354–3360, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. D. Miller, R. Geleziunas, E. Bianchi et al., “A human monoclonal antibody neutralizes diverse HIV-1 isolates by binding a critical gp41 epitope,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14759–14764, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. S. Veazey, P. J. Klasse, S. M. Schader et al., “Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion,” Nature, vol. 438, no. 7064, pp. 99–102, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. Schüpbach, M. Flepp, D. Pontelli, Z. Tomasik, R. Lüthy, and J. Böni, “Heat-mediated immune complex dissociation and enzyme-linked immunosorbent assay signal amplification render p24 antigen detection in plasma as sensitive as HIV-1 RNA detection by polymerase chain reaction,” AIDS, vol. 10, no. 10, pp. 1085–1090, 1996. View at Google Scholar · View at Scopus
  11. B. L. Levine, L. M. Humeau, J. Boyer et al., “Gene transfer in humans using a conditionally replicating lentiviral vector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17372–17377, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. L. Reynolds, C. Ullman, M. Moore et al., “Repression of the HIV-1 5 LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 1615–1620, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Oufir, Artificial HIV-1 enhancer binding peptides fused with nuclear localization signals and protein transduction domains as passive repressors of HIV-1 LTR-controlled transcription, Ph.D. thesis, Universität Zürich, Zürich, Switzerland, 2004.
  14. G. Caderas, S. Klauser, N. Liu, A. Bienz, and B. Gutte, “Inhibition of HIV-1 enhancer-controlled transcription by artificial enhancer-binding peptides derived from bacteriophage 434 repressor,” European Journal of Biochemistry, vol. 266, no. 2, pp. 599–607, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Hehlgans, M. Stolz, S. Klauser et al., “The DNA-binding properties of an artificial 42-residue polypeptide derived from a natural repressor,” FEBS Letters, vol. 315, no. 1, pp. 51–55, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Arap, W. Haedicke, M. Bernasconi et al., “Targeting the prostate for destruction through a vascular address,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1527–1531, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. Y. Oka, A. Tsuboi, T. Taguchi et al., “Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 38, pp. 13885–13890, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. P. A. Wender, D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman, and J. B. Rothbard, “The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13003–13008, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. B. U. Samuel, B. Hearn, D. Mack et al., “Delivery of antimicrobials into parasites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14281–14286, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. V. Pande and M. J. Ramos, “Nuclear factor kappa B: a potential target for anti-HIV chemotherapy,” Current Medicinal Chemistry, vol. 10, no. 16, pp. 1603–1615, 2003. View at Google Scholar · View at Scopus
  21. M. Fried and D. M. Crothers, “Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis,” Nucleic Acids Research, vol. 9, no. 23, pp. 6505–6525, 1981. View at Publisher · View at Google Scholar
  22. R. B. Merrifield, “Solid phase peptide synthesis. I. The synthesis of a tetrapeptide,” Journal of the American Chemical Society, vol. 85, no. 14, pp. 2149–2154, 1963. View at Google Scholar
  23. R. B. Merrifield, “Solid-phase peptide synthesis,” in Peptides-Synthesis, Structures and Applications, B. Gutte, Ed., pp. 93–169, Academic Press, San Diego, Calif, USA, 1995. View at Google Scholar
  24. A. M. Maxam and W. Gilbert, “Sequencing end-labeled DNA with base-specific chemical cleavages,” Methods in Enzymology, vol. 65, pp. 499–560, 1980. View at Publisher · View at Google Scholar
  25. M. M. Garner and A. Revzin, “A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system,” Nucleic Acids Research, vol. 9, no. 13, pp. 3047–3060, 1981. View at Publisher · View at Google Scholar
  26. K. Städler, N. Liu, L. Trotman et al., “Design, synthesis, and characterization of HIV-1 enhancer-binding polypeptides derived from bacteriophage 434 repressor,” International Journal of Peptide and Protein Research, vol. 46, no. 3-4, pp. 333–340, 1995. View at Google Scholar
  27. D. J. Galas and A. Schmitz, “DNAse footprinting: a simple method for the detection of protein-DNA binding specificity,” Nucleic Acids Research, vol. 5, no. 9, pp. 3157–3170, 1978. View at Google Scholar
  28. N. Liu, Artificial HIV-1 enhancer-binding peptide dimerized by a leucine zipper and study of a retro-leucine zipper, Ph.D. thesis, Universität Zürich, Zürich, Switzerland, 1999.
  29. G. Westin, T. Gerster, M. M. Müller, G. Schaffner, and W. Schaffner, “OVEC, a versatile system to study transcription in mammalian cells and cell-free extracts,” Nucleic Acids Research, vol. 15, no. 17, pp. 6787–6798, 1987. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Schreiber, P. Matthias, M. M. Müller, and W. Schaffner, “Rapid detection of octamer binding proteins with “mini-extracts”, prepared from a small number of cells,” Nucleic Acids Research, vol. 17, no. 15, p. 6419, 1989. View at Google Scholar · View at Scopus
  31. R. F. Weaver and C. Weissmann, “Mapping of RNA by a modification of the berk-sharp procedure: the 5 termini of 15 S beta-globin mRNA precursor and mature 10 S beta-globin mRNA have identical map coordinates,” Nucleic Acids Research, vol. 7, no. 5, pp. 1175–1194, 1979. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Schägger and G. von Jagow, “Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa,” Analytical Biochemistry, vol. 166, no. 2, pp. 368–379, 1987. View at Google Scholar · View at Scopus
  33. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Google Scholar · View at Scopus
  34. J. McGadey, “A tetrazolium method for non-specific alkaline phosphatase,” Histochemie, vol. 23, no. 2, pp. 180–184, 1970. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Gervaix, D. West, L. M. Leoni, D. D. Richman, F. Wong-Staal, and J. Corbeil, “A new reporter cell line to monitor HIV infection and drug susceptibility in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4653–4658, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Li, G. Mak, and B. R. Franza Jr., “In vitro study of functional involvement of Sp1, NF-kappa B/Rel, and AP1 in phorbol 12-myristate 13-acetate-mediated HIV-1 long terminal repeat activation,” Journal of Biological Chemistry, vol. 269, no. 48, pp. 30616–30619, 1994. View at Google Scholar · View at Scopus
  37. D. Thanos and T. Maniatis, “NF-kappa B: a lesson in family values,” Cell, vol. 80, no. 4, pp. 529–532, 1995. View at Google Scholar · View at Scopus
  38. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  39. T.-C. Chou and M. Hayball, CalcuSyn for Windows 3.1 and 95: Multiple Dose Effect Analyzer and Manual for IBM-PC, Biosoft, Cambridge, UK, 1996.
  40. M. N. Bobrow, T. D. Harris, K. J. Shaughnessy, and G. J. Litt, “Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays,” Journal of Immunological Methods, vol. 125, no. 1-2, pp. 279–285, 1989. View at Publisher · View at Google Scholar
  41. L. R. Bisset, S. Bosbach, Z. Tomasik, H. Lutz, J. Schüpbach, and J. Böni, “Quantification of in vitro retroviral replication using a one-tube real-time RT-PCR system incorporating direct RNA preparation,” Journal of Virological Methods, vol. 91, no. 2, pp. 149–155, 2001. View at Publisher · View at Google Scholar
  42. M. D. Kuwabara and D. S. Sigman, “Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes,” Biochemistry, vol. 26, no. 23, pp. 7234–7238, 1987. View at Google Scholar
  43. K. Djabali, V. M. Aita, and A. M. Christiano, “Hairless is translocated to the nucleus via a novel bipartite nuclear localization signal and is associated with the nuclear matrix,” Journal of Cell Science, vol. 114, no. 2, pp. 367–376, 2001. View at Google Scholar
  44. T. Tachibana, M. Hieda, and Y. Yoneda, “Up-regulation of nuclear protein import by nuclear localization signal sequences in living cells,” FEBS Letters, vol. 442, no. 2-3, pp. 235–240, 1999. View at Publisher · View at Google Scholar
  45. A. S. Baldwin, “The NF-kappa B and I kappa B proteins: new discoveries and insights,” Annual Review of Immunology, vol. 14, pp. 649–681, 1996. View at Google Scholar
  46. G. Nabel and D. Baltimore, “An inducible transcription factor activates expression of human immunodeficiency virus in T cells,” Nature, vol. 326, no. 6114, pp. 711–713, 1987. View at Google Scholar · View at Scopus
  47. G. E. Griffin, K. Leung, T. M. Folks, S. Kunkel, and G. J. Nabel, “Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B,” Nature, vol. 339, no. 6219, pp. 70–73, 1989. View at Google Scholar · View at Scopus
  48. M. Grilli, J. J. S. Chiu, and M. J. Lenardo, “NF-kappa B and Rel: participants in a multiform transcriptional regulatory system,” International Review of Cytology, vol. 143, pp. 1–62, 1993. View at Google Scholar · View at Scopus
  49. T. Jones, “Vacc-4x, a therapeutic vaccine comprised of four engineered peptides for the potential treatment of HIV infection,” Current Opinion in Investigational Drugs, vol. 11, no. 8, pp. 964–970, 2010. View at Google Scholar · View at Scopus