Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2011, Article ID 341816, 10 pages
http://dx.doi.org/10.1155/2011/341816
Research Article

Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors

1Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
2Department of Cell Biology and Biochemistry, U. S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA

Received 8 July 2011; Accepted 9 August 2011

Academic Editor: Anthony P. Schmitt

Copyright © 2011 Yuliang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bray, “Defense against filoviruses used as biological weapons,” Antiviral Research, vol. 57, no. 1-2, pp. 53–60, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. A. L. Hartman, J. S. Towner, and S. T. Nichol, “Ebola and marburg hemorrhagic fever,” Clinics in Laboratory Medicine, vol. 30, no. 1, pp. 161–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Dolnik, L. Kolesnikova, and S. Becker, “Filoviruses: interactions with the host cell,” Cellular and Molecular Life Sciences, vol. 65, no. 5, pp. 756–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. N. Harty, M. E. Brown, G. Wang, J. Huibregtse, and F. P. Hayes, “A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13871–13876, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. R. F. Johnson, P. Bell, and R. N. Harty, “Effect of Ebola virus proteins GP, NP and VP35 on VP40 VLP morphology,” Virology Journal, vol. 3, article 31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Licata, M. Simpson-Holley, N. T. Wright, Z. Han, J. Paragas, and R. N. Harty, “Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4,” The Journal of Virology, vol. 77, no. 3, pp. 1812–1819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Licata, R. F. Johnson, Z. Han, and R. N. Harty, “Contribution of Ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles,” The Journal of Virology, vol. 78, no. 14, pp. 7344–7351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Liu, L. Cocka, A. Okumura, Y. A. Zhang, J. Oriol Sunyer, and R. N. Harty, “Conserved motifs within Ebola and Marburg virus VP40 proteins are important for stability, localization, and subsequent budding of virus-like particles,” The Journal of Virology, vol. 84, no. 5, pp. 2294–2303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Noda, H. Sagara, E. Suzuki, A. Takada, H. Kida, and Y. Kawaoka, “Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP,” The Journal of Virology, vol. 76, no. 10, pp. 4855–4865, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Timmins, G. Schoehn, S. Ricard-Blum et al., “Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4,” Journal of Molecular Biology, vol. 326, no. 2, pp. 493–502, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. B. J. Chen and R. A. Lamb, “Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?” Virology, vol. 372, no. 2, pp. 221–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Dolnik, L. Kolesnikova, L. Stevermann, and S. Becker, “Tsg101 is recruited by a late domain of the nucleocapsid protein to support budding of Marburg virus-like particles,” The Journal of Virology, vol. 84, no. 15, pp. 7847–7856, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Kolesnikova, T. Strecker, E. Morita et al., “Vacuolar protein sorting pathway contributes to the release of marburg virus,” The Journal of Virology, vol. 83, no. 5, pp. 2327–2337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Urata and J. Yasuda, “Regulation of Marburg virus (MARV) budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for binding to MARV and Ebola virus VP40,” Journal of General Virology, vol. 91, no. 1, pp. 228–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Urata, T. Noda, Y. Kawaoka, S. Morikawa, H. Yokosawa, and J. Yasuda, “Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP,” The Journal of Virology, vol. 81, no. 9, pp. 4895–4899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Garrus, U. K. Von Schwedler, O. W. Pornillos et al., “Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding,” Cell, vol. 107, no. 1, pp. 55–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Goff, L. S. Ehrlich, S. N. Cohen, and C. A. Carter, “Tsg101 control of human immunodeficiency virus type 1 Gag trafficking and release,” The Journal of Virology, vol. 77, no. 17, pp. 9173–9182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Irie, J. M. Licata, and R. N. Harty, “Functional characterization of Ebola virus L-domains using VSV recombinants,” Virology, vol. 336, no. 2, pp. 291–298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. Katzmann, M. Babst, and S. D. Emr, “Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I,” Cell, vol. 106, no. 2, pp. 145–155, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Martin-Serrano, T. Zang, and P. D. Bieniasz, “Role of ESCRT-I in retroviral budding,” The Journal of Virology, vol. 77, no. 8, pp. 4794–4804, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Martin-Serrano, T. Zang, and P. D. Bieniasz, “HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress,” Nature Medicine, vol. 7, no. 12, pp. 1313–1319, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Pincetic, G. Medina, C. Carter, and J. Leis, “Avian sarcoma virus and human immunodeficiency virus, type 1 use different subsets of ESCRT proteins to facilitate the budding process,” The Journal of Biological Chemistry, vol. 283, no. 44, pp. 29822–29830, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H.-Y. Chung, E. Morita, U. Von Schwedler, B. Müller, H.-G. Kräusslich, and W. I. Sundquist, “NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains,” The Journal of Virology, vol. 82, no. 10, pp. 4884–4897, 2008. View at Publisher · View at Google Scholar
  24. J. Yasuda, M. Nakao, Y. Kawaoka, and H. Shida, “Nedd4 regulates egress of Ebola virus-like particles from host cells,” The Journal of Virology, vol. 77, no. 18, pp. 9987–9992, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Atanasiu, J. C. Whitbeck, T. M. Cairns, B. Reilly, G. H. Cohen, and R. J. Eisenberg, “Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18718–18723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. C. D. Hu, Y. Chinenov, and T. K. Kerppola, “Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation,” Molecular Cell, vol. 9, no. 4, pp. 789–798, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. T. K. Kerppola, “Visualization of molecular interactions by fluorescence complementation,” Nature Reviews Molecular Cell Biology, vol. 7, no. 6, pp. 449–456, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. K. Kerppola, “Bimolecular fluorescence complementation: visualization of molecular interactions in living cells,” Methods in Cell Biology, vol. 85, pp. 431–470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. L. MacDonald, J. Lamerdin, S. Owens et al., “Identifying off-target effects and hidden phenotypes of drugs in human cells,” Nature Chemical Biology, vol. 2, no. 6, pp. 329–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Nagai, K. Ibata, E. S. Park, M. Kubota, K. Mikoshiba, and A. Miyawaki, “A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications,” Nature Biotechnology, vol. 20, no. 1, pp. 87–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Yu, M. West, B. H. Keon et al., “Measuring drug action in the cellular context using protein-fragment complementation assays,” Assay Drug Dev Technol, vol. 1, no. 6, pp. 811–822, 2003. View at Google Scholar · View at Scopus
  32. Y. Liu, S. Stone, and R. N. Harty, “Characterization of filovirus protein-protein interactions in mammalian cells using bimolecular complementation,” The Journal of Infectious Diseases. In press.
  33. R. N. Harty, “No exit: targeting the budding process to inhibit filovirus replication,” Antiviral Research, vol. 81, no. 3, pp. 189–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Tavassoli, Q. Lu, J. Gam, H. Pan, S. J. Benkovic, and S. N. Cohen, “Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag-TSG101 interaction,” ACS Chemical Biology, vol. 3, no. 12, pp. 757–764, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. A. Waheed and E. O. Freed, “Peptide inhibitors of HIV-1 egress,” ACS Chemical Biology, vol. 3, no. 12, pp. 745–747, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. J. Irwin and B. K. Shoichet, “ZINC—a free database of commercially available compounds for virtual screening,” Journal of Chemical Information and Modeling, vol. 45, no. 1, pp. 177–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Pornillos, S. L. Alam, D. R. Davis, and W. I. Sundquist, “Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein,” Nature Structural Biology, vol. 9, no. 11, pp. 812–817, 2002. View at Google Scholar · View at Scopus
  38. G. M. Morris, H. Ruth, W. Lindstrom et al., “Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Zhang, K. Kumar, X. Jiang, A. Wallqvist, and J. Reifman, “DOVIS: an implementation for high-throughput virtual screening using AutoDock,” BMC Bioinformatics, vol. 9, article 126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. R. Brooks, C. L. Brooks, A. D. Mackerell et al., “CHARMM: the biomolecular simulation program,” Journal of Computational Chemistry, vol. 30, no. 10, pp. 1545–1614, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. T. A. Halgren, “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94,” Journal of Computational Chemistry, vol. 17, no. 5-6, pp. 490–519, 1996. View at Google Scholar · View at Scopus
  42. A. Krammer, P. D. Kirchhoff, X. Jiang, C. M. Venkatachalam, and M. Waldman, “LigScore: a novel scoring function for predicting binding affinities,” Journal of Molecular Graphics and Modelling, vol. 23, no. 5, pp. 395–407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Han and R. N. Harty, “Packaging of actin into Ebola virus VLPs,” Virology Journal, vol. 2, article 92, 2005. View at Publisher · View at Google Scholar
  44. G. Ruthel, G. L. Demmin, G. Kallstrom et al., “Association of Ebola virus matrix protein Vp40 with microtubules,” The Journal of Virology, vol. 79, no. 8, pp. 4709–4719, 2005. View at Publisher · View at Google Scholar
  45. M. J. Aman, M. S. Kinch, K. Warfield et al., “Development of a broad-spectrum antiviral with activity against Ebola virus,” Antiviral Research, vol. 83, no. 3, pp. 245–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. S. Kinch, A. S. Yunus, C. Lear et al., “FGI-104: a broad-spectrum small molecule inhibitor of viral infection,” American Journal of Translational Research, vol. 1, no. 1, pp. 87–98, 2009. View at Google Scholar · View at Scopus
  47. S. R. Radoshitzky, K. L. Warfield, X. Chi et al., “Ebolavirus ?-peptide immunoadhesins inhibit Marburgvirus and Ebolavirus cell entry,” The Journal of Virology, vol. 85, no. 17, pp. 8502–8513, 2011. View at Publisher · View at Google Scholar
  48. E. H. Miller, J. S. Harrison, S. R. Radoshitzky et al., “Inhibition of Ebola virus entry by a C-peptide targeted to endosomes,” The Journal of Biological Chemistry, vol. 286, no. 18, pp. 15854–15861, 2011. View at Publisher · View at Google Scholar
  49. A. Basu, B. Li, D. M. Mills et al., “Identification of a small-molecule entry inhibitor for filoviruses,” The Journal of Virology, vol. 85, no. 7, pp. 3106–3119, 2011. View at Publisher · View at Google Scholar
  50. A. A. Capul and J. C. de la Torre, “A cell-based luciferase assay amenable to high-throughput screening of inhibitors of arenavirus budding,” Virology, vol. 382, no. 1, pp. 107–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Deng, C. Chuaqui, and J. Singh, “Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions,” Journal of Medicinal Chemistry, vol. 47, no. 2, pp. 337–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Hoenen, N. Biedenkopf, F. Zielecki et al., “Oligomerization of ebola virus VP40 is essential for particle morphogenesis and regulation of viral transcription,” The Journal of Virology, vol. 84, no. 14, pp. 7053–7063, 2010. View at Publisher · View at Google Scholar · View at Scopus