Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2011, Article ID 609465, 11 pages
http://dx.doi.org/10.1155/2011/609465
Review Article

Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

UMR 1161 INRA-ENVA-ANSES, 7 avenue Général de Gaulle, 94704 Maisons-Alfort, France

Received 12 December 2010; Revised 3 March 2011; Accepted 18 May 2011

Academic Editor: Peter J. M. Rottier

Copyright © 2011 Sophie Le Poder. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Lai and D. Cavanagh, “The molecular biology of coronaviruses,” Advances in Virus Research, vol. 48, pp. 1–100, 1997. View at Google Scholar · View at Scopus
  2. M. Godet, R. L'Haridon, J. F. Vautherot, and H. Laude, “TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions,” Virology, vol. 188, no. 2, pp. 666–675, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Yu, W. Bi, S. R. Weiss, and J. L. Leibowitz, “Mouse hepatitis virus gene 5b protein is a new virion envelope protein,” Virology, vol. 202, no. 2, pp. 1018–1023, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. Q. Zeng, M. A. Langereis, A. L. W. van Vliet, E. G. Huizinga, and R. J. De Groot, “Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 26, pp. 9065–9069, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. B. Delmas and H. Laude, “Assembly of coronavirus spike protein into trimers and its role in epitope expression,” Journal of Virology, vol. 64, no. 11, pp. 5367–5375, 1990. View at Google Scholar · View at Scopus
  6. R. J. de Groot, R. W. van Leen, M. J. M. Dalderup, H. Vennema, M. C. Horzinek, and W. J. M. Spaan, “Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice,” Virology, vol. 171, no. 2, pp. 493–502, 1989. View at Google Scholar · View at Scopus
  7. D. Escors, E. Camafeita, J. Ortego, H. Laude, and L. Enjuanes, “Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core,” Journal of Virology, vol. 75, no. 24, pp. 12228–12240, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. H. Vennema, G. J. Godeke, J. W. A. Rossen et al., “Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes,” The EMBO Journal, vol. 15, no. 8, pp. 2020–2028, 1996. View at Google Scholar · View at Scopus
  9. J. Holzworth, “Some important disorders of cats,” The Cornell Veterinarian, vol. 53, pp. 157–160, 1963. View at Google Scholar · View at Scopus
  10. J. M. Ward, “Morphogenesis of a virus in cats with experimental feline infectious peritonitis,” Virology, vol. 41, no. 1, pp. 191–194, 1970. View at Google Scholar · View at Scopus
  11. L. N. Binn, E. C. Lazar, K. P. Keenan, D. L. Huxsoll, R. H. Marchwicki, and A. J. Strano, “Recovery and characterization of a coronavirus from military dogs with diarrhea,” in Proceedings of the Annual Meeting of the United States Animal Health Association, pp. 359–366, 1974.
  12. A. E. Gorbalenya, “Genomics and evolution of the Nidovirales,” in Nidoviruses, T. Gallagher and E. J. Snijder, Eds., pp. 15–28, ASM Press, Washington, DC, USA, 2008. View at Google Scholar
  13. A. E. Gorbalenya, L. Enjuanes, J. Ziebuhr, and E. J. Snijder, “Nidovirales: evolving the largest RNA virus genome,” Virus Research, vol. 117, no. 1, pp. 17–37, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. E. B. Carstens, “Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009),” Archives of Virology, vol. 155, no. 1, pp. 133–146, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. A. G. Wise, M. Kiupel, M. M. Garner, A. K. Clark, and R. K. Maes, “Comparative sequence analysis of the distal one-third of the genomes of a systemic and an enteric ferret coronavirus,” Virus Research, vol. 149, no. 1, pp. 42–50, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. A. N. Vlasova, R. Halpin, S. Wang, E. Ghedin, D. J. Spiro, and L. J. Saif, “Molecular characterization of a new species in the genus Alphacoronavirus associated with mink epizootic catarrhal gastroenteritis,” The Journal of General Virology, vol. 92, no. 6, pp. 1369–1379, 2011. View at Publisher · View at Google Scholar · View at PubMed
  17. N. Shiba, K. Maeda, H. Kato, M. Mochizuki, and H. Iwata, “Differentiation of feline coronavirus type I and II infections by virus neutralization test,” Veterinary Microbiology, vol. 124, no. 3-4, pp. 348–352, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. N. C. Pedersen, J. W. Black, J. F. Boyle, J. F. Evermann, A. J. McKeirnan, and R. L. Ott, “Pathogenic differences between various feline coronavirus isolates,” Advances in Experimental Medicine and Biology, vol. 173, pp. 365–380, 1984. View at Google Scholar · View at Scopus
  19. A. A. P. M. Herrewegh, I. Smeenk, M. C. Horzinek, P. J. M. Rottier, and R. J. De Groot, “Feline coronavirus type II trains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus,” Journal of Virology, vol. 72, no. 5, pp. 4508–4514, 1998. View at Google Scholar · View at Scopus
  20. K. Motokawa, T. Hohdatsu, H. Hashimoto, and H. Koyama, “Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses,” Microbiology and Immunology, vol. 40, no. 6, pp. 425–433, 1996. View at Google Scholar · View at Scopus
  21. K. Motokawa, T. Hohdatsu, C. Aizawa, H. Koyama, and H. Hashimoto, “Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I,” Archives of Virology, vol. 140, no. 3, pp. 469–480, 1995. View at Google Scholar · View at Scopus
  22. H. Vennema, “Genetic drift and genetic shift during feline coronavirus evolution,” Veterinary Microbiology, vol. 69, no. 1-2, pp. 139–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. N. C. Pedersen, “A review of feline infectious peritonitis virus infection: 1963–2008,” Journal of Feline Medicine and Surgery, vol. 11, no. 4, pp. 225–258, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. D. D. Addie, I. A. T. Schaap, L. Nicolson, and O. Jarrett, “Persistence and transmission of natural type I feline coronavirus infection,” The Journal of General Virology, vol. 84, no. 10, pp. 2735–2744, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Hohdatsu, S. Okada, Y. Ishizuka, H. Yamada, and H. Koyama, “The prevalence of types I and II feline coronavirus infections in cats,” The Japanese Society of Veterinary Science, vol. 54, no. 3, pp. 557–562, 1992. View at Google Scholar · View at Scopus
  26. V. Benetka, A. Kübber-Heiss, J. Kolodziejek, N. Nowotny, M. Hofmann-Parisot, and K. Möstl, “Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis,” Veterinary Microbiology, vol. 99, no. 1, pp. 31–42, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Kummrow, M. L. Meli, M. Haessig et al., “Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland,” Clinical and Diagnostic Laboratory Immunology, vol. 12, no. 10, pp. 1209–1215, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. Pratelli, V. Martella, N. Decaro et al., “Genetic diversity of a canine coronavirus detected in pups with diarrhoea in Italy,” Journal of Virological Methods, vol. 110, no. 1, pp. 9–17, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Pratelli, V. Martella, M. Pistello et al., “Identification of coronaviruses in dogs that segregate separately from the canine coronavirus genotype,” Journal of Virological Methods, vol. 107, no. 2, pp. 213–222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Pratelli, “Genetic evolution of canine coronavirus and recent advances in prophylaxis,” Veterinary Research, vol. 37, no. 2, pp. 191–200, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. Pratelli, N. Decaro, A. Tinelli et al., “Two genotypes of canine coronavirus simultaneously detected in the fecal samples of dogs with diarrhea,” Journal of Clinical Microbiology, vol. 42, no. 4, pp. 1797–1799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Escutenaire, M. Isaksson, L. H. M. Renström et al., “Characterization of divergent and atypical canine coronaviruses from Sweden,” Archives of Virology, vol. 152, no. 8, pp. 1507–1514, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. A. Lorusso, N. Decaro, P. Schellen et al., “Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein,” Journal of Virology, vol. 82, no. 20, pp. 10312–10317, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. Perlman and J. Netland, “Coronaviruses post-SARS: update on replication and pathogenesis,” Nature Reviews Microbiology, vol. 7, no. 6, pp. 439–450, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. N. Decaro, V. Mari, M. Campolo et al., “Recombinant canine coronaviruses related to transmissible gastroenteritis virus of swine are circulating in dogs,” Journal of Virology, vol. 83, no. 3, pp. 1532–1537, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. K. Erles and J. Brownlie, “Sequence analysis of divergent canine coronavirus strains present in a UK dog population,” Virus Research, vol. 141, no. 1, pp. 21–25, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. N. Decaro, V. Mari, G. Elia et al., “Recombinant canine coronaviruses in dogs, Europe,” Emerging Infectious Diseases, vol. 16, no. 1, pp. 41–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. N. C. Pedersen, J. F. Boyle, K. Floyd, A. Fudge, and J. Barker, “An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis,” American Journal of Veterinary Research, vol. 42, no. 3, pp. 368–377, 1981. View at Google Scholar · View at Scopus
  39. C. Buonavoglia, N. Decaro, V. Martella et al., “Canine coronavirus highly pathogenic for dogs,” Emerging Infectious Diseases, vol. 12, no. 3, pp. 492–494, 2006. View at Google Scholar · View at Scopus
  40. V. Zappulli, D. Caliari, L. Cavicchioli, A. Tinelli, and M. Castagnaro, “Systemic fatal type II coronavirus infection in a dog: pathological findings and immunohistochemistry,” Research in Veterinary Science, vol. 84, no. 2, pp. 278–282, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. A. G. Wise, M. Kiupel, and R. K. Maes, “Molecular characterization of a novel coronavirus associated with epizootic catarrhal enteritis (ECE) in ferrets,” Virology, vol. 349, no. 1, pp. 164–174, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. M. Garner, K. Ramsell, N. Morera et al., “Clinicopathologic features of a systemic coronavirus-associated disease resembling feline infectious peritonitis in the domestic ferret (Mustela putorius),” Veterinary Pathology, vol. 45, no. 2, pp. 236–246, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. J. Murray, M. Kiupel, and R. K. Maes, “Ferret coronavirus-associated diseases,” Veterinary Clinics of North America—Exotic Animal Practice, vol. 13, no. 3, pp. 543–560, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. J. E. Foley, A. Poland, J. Carlson, and N. C. Pedersen, “Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus,” Journal of the American Veterinary Medical Association, vol. 210, no. 9, pp. 1313–1318, 1997. View at Google Scholar · View at Scopus
  45. A. Kipar, H. May, S. Menger, M. Weber, W. Leukert, and M. Reinacher, “Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis,” Veterinary Pathology, vol. 42, no. 3, pp. 321–330, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. J. F. Evermann, C. J. Henry, and S. L. Marks, “Feline infectious peritonitis,” Journal of the American Veterinary Medical Association, vol. 206, no. 8, pp. 1130–1134, 1995. View at Google Scholar · View at Scopus
  47. K. Marioni-Henry, C. H. Vite, A. L. Newton, and T. J. Van Winkle, “Prevalence of diseases of the spinal cord of cats,” Journal of Veterinary Internal Medicine, vol. 18, no. 6, pp. 851–858, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Hartmann, “Feline infectious peritonitis,” Veterinary Clinics of North America—Small Animal Practice, vol. 35, no. 1, pp. 39–79, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. N. Decaro, V. Martella, G. Elia et al., “Molecular characterisation of the virulent canine coronavirus CB/05 strain,” Virus Research, vol. 125, no. 1, pp. 54–60, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. N. Decaro, G. Elia, V. Martella et al., “Immunity after natural exposure to enteric canine coronavirus does not provide complete protection against infection with the new pantropic CB/05 strain,” Vaccine, vol. 28, no. 3, pp. 724–729, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. N. Decaro, M. Campolo, A. Lorusso et al., “Experimental infection of dogs with a novel strain of canine coronavirus causing systemic disease and lymphopenia,” Veterinary Microbiology, vol. 128, no. 3-4, pp. 253–260, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. M. Marinaro, V. Mari, A. L. Bellacicco et al., “Prolonged depletion of circulating CD4+ T lymphocytes and acute monocytosis after pantropic canine coronavirus infection in dogs,” Virus Research, vol. 152, no. 1-2, pp. 73–78, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. C. A. Stoddart and F. W. Scott, “Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence,” Journal of Virology, vol. 63, no. 1, pp. 436–440, 1989. View at Google Scholar · View at Scopus
  54. P. J. M. Rottier, K. Nakamura, P. Schellen, H. Volders, and B. J. Haijema, “Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein,” Journal of Virology, vol. 79, no. 22, pp. 14122–14130, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. H. L. Dewerchin, E. Cornelissen, and H. J. Nauwynck, “Replication of feline coronaviruses in peripheral blood monocytes,” Archives of Virology, vol. 150, no. 12, pp. 2483–2500, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. L. De Martino, G. Marfé, M. Longo et al., “Bid cleavage, cytochrome c release and caspase activation in canine coronavirus-induced apoptosis,” Veterinary Microbiology, vol. 141, no. 1-2, pp. 36–45, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. A. Ruggieri, L. Di Trani, I. Gatto et al., “Canine coronavirus induces apoptosis in cultured cells,” Veterinary Microbiology, vol. 121, no. 1-2, pp. 64–72, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. N. Decaro and C. Buonavoglia, “An update on canine coronaviruses: viral evolution and pathobiology,” Veterinary Microbiology, vol. 132, no. 3-4, pp. 221–234, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. B. H. Williams, M. Kiupel, K. H. West, J. T. Raymond, C. K. Grant, and L. T. Glickman, “Coronavirus-associated epizootic catarrhal enteritis in ferrets,” Journal of the American Veterinary Medical Association, vol. 217, no. 4, pp. 526–530, 2000. View at Google Scholar · View at Scopus
  60. J. Martínez, M. Reinacher, D. Perpiñán, and A. Ramis, “Identification of group 1 coronavirus antigen in multisystemic granulomatous lesions in ferrets (Mustela putorius furo),” Journal of Comparative Pathology, vol. 138, no. 1, pp. 54–58, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. D. Cavanagh, “The coronavirus surface protein,” in The Coronaviridae, S. G. Siddell, Ed., pp. 73–103, Plenum, New York, NY, USA, 1995. View at Google Scholar
  62. B. J. Bosch, R. van der Zee, C. A. M. de Haan, and P. J. M. Rottier, “The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex,” Journal of Virology, vol. 77, no. 16, pp. 8801–8811, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. C. A. M. de Haan, K. Stadler, G. J. Godeke, B. J. Bosch, and P. J. M. Rottier, “Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion,” Journal of Virology, vol. 78, no. 11, pp. 6048–6054, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. C. A. M. de Haan, B. J. Haijema, P. Schellen et al., “Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation,” Journal of Virology, vol. 82, no. 12, pp. 6078–6083, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. B. Delmas, J. Gelfi, R. L'Haridon et al., “Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV,” Nature, vol. 357, no. 6377, pp. 417–420, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. U. Lendeckel, T. Kähne, D. Riemann, K. Neubert, M. Arndt, and D. Reinhold, “Review: the role of membrane peptidases in immune functions,” Advances in Experimental Medicine and Biology, vol. 477, pp. 1–24, 2000. View at Google Scholar · View at Scopus
  67. A. T. Look, R. A. Ashmun, L. H. Shapiro, and S. C. Peiper, “Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N,” The Journal of Clinical Investigation, vol. 83, no. 4, pp. 1299–1307, 1989. View at Google Scholar · View at Scopus
  68. A. J. Kenny and S. Maroux, “Topology of microvillar membrance hydrolases of kidney and intestine,” Physiological Reviews, vol. 62, no. 1, pp. 91–128, 1982. View at Google Scholar · View at Scopus
  69. T. Hohdatsu, T. Sasamoto, S. Okada, and H. Koyama, “Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): preparation of MAbs which discriminate between FIPV strain 79–1146 and FECV strain 79–1683,” Veterinary Microbiology, vol. 28, no. 1, pp. 13–24, 1991. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Dye, N. Temperton, and S. G. Siddell, “Type I feline coronavirus spike glycoprotien fails to recognize aminopeptidase N as a functional receptor on feline cell lines,” The Journal of General Virology, vol. 88, no. 6, pp. 1753–1760, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. G. Tekes, R. Hofmann-Lehmann, B. Bank-Wolf, R. Maier, H. J. Thiel, and V. Thiel, “Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage,” Journal of Virology, vol. 84, no. 3, pp. 1326–1333, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. S. A. Jeffers, S. M. Tusell, L. Gillim-Ross et al., “CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15748–15753, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. S. A. Jeffers, E. M. Hemmila, and K. V. Holmes, “Human coronavirus 229E can use CD209L (L-Sign) to enter cells,” Advances in Experimental Medicine and Biology, vol. 581, pp. 265–269, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. A. D. Regan, D. G. Ousterout, and G. R. Whittaker, “Feline lectin activity is critical for the cellular entry of feline infectious peritonitis virus,” Journal of Virology, vol. 84, no. 15, pp. 7917–7921, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. A. D. Regan and G. R. Whittaker, “Utilization of DC-SIGN for entry of feline coronaviruses into host cells,” Journal of Virology, vol. 82, no. 23, pp. 11992–11996, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. G. H. Hansen, B. Delmas, L. Besnardeau et al., “The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment,” Journal of Virology, vol. 72, no. 1, pp. 527–534, 1998. View at Google Scholar · View at Scopus
  77. R. Nomura, A. Kiyota, E. Suzaki et al., “Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae,” Journal of Virology, vol. 78, no. 16, pp. 8701–8708, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. E. Van Hamme, H. L. Dewerchin, E. Cornelissen, and H. J. Nauwynck, “Attachment and internalization of feline infectious peritonitis virus in feline blood monocytes and Crandell feline kidney cells,” The Journal of General Virology, vol. 88, no. 9, pp. 2527–2532, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. E. Van Hamme, H. L. Dewerchin, E. Cornelissen, B. Verhasselt, and H. J. Nauwynck, “Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on Dynamin,” The Journal of General Virology, vol. 89, no. 9, pp. 2147–2158, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. J. Ziebuhr, E. J. Snijder, and A. E. Gorbalenya, “Virus-encoded proteinases and proteolytic processing in the Nidovirales,” The Journal of General Virology, vol. 81, no. 4, pp. 853–879, 2000. View at Google Scholar · View at Scopus
  81. S. G. Sawicki, D. L. Sawicki, and S. G. Siddell, “A contemporary view of coronavirus transcription,” Journal of Virology, vol. 81, no. 1, pp. 20–29, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. E. Decroly, I. Imbert, B. Coutard et al., “Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2O)-methyltransferase activity,” Journal of Virology, vol. 82, no. 16, pp. 8071–8084, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. S. Zúñiga, I. Sola, S. Alonso, and L. Enjuanes, “Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis,” Journal of Virology, vol. 78, no. 2, pp. 980–994, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. T. J. Cowley and S. R. Weiss, “Murine coronavirus neuropathogenesis: determinants of virulence,” Journal of Neurovirology, vol. 16, no. 6, pp. 427–434, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. C. M. Sánchez, A. Izeta, J. M. Sánchez-Morgado et al., “Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence,” Journal of Virology, vol. 73, no. 9, pp. 7607–7618, 1999. View at Google Scholar · View at Scopus
  86. R. Casais, B. Dove, D. Cavanagh, and P. Britton, “Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism,” Journal of Virology, vol. 77, no. 16, pp. 9084–9089, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. J. M. Sanchez-Morgado, S. Poynter, and T. H. Morris, “Molecular characterization of a virulent canine coronavirus BGF strain,” Virus Research, vol. 104, no. 1, pp. 27–31, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. H. Laude, J. Gelfi, L. Lavenant, and B. Charley, “Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus,” Journal of Virology, vol. 66, no. 2, pp. 743–749, 1992. View at Google Scholar · View at Scopus
  89. M. A. Brown, J. L. Troyer, J. Pecon-Slattery, M. E. Roelke, and S. J. O'Brien, “Genetics and pathogenesis of feline infectious peritonitis virus,” Emerging Infectious Diseases, vol. 15, no. 9, pp. 1445–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Enjuanes, I. Sola, S. Zuniga, and J. L. Moreno, “Coronavirus RNA synthesis: transcription,” in Coronaviruses: Molecular and Cellular Biology, V. Thiel, Ed., pp. 81–207, Horizon Scientific Press, Norwich, UK, 2007. View at Google Scholar
  91. Q. Ning, S. Lakatoo, M. Liu et al., “Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4α,” The Journal of Biological Chemistry, vol. 278, no. 18, pp. 15541–15549, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. T. J. Cowley, S. Y. Long, and S. R. Weiss, “The murine coronavirus nucleocapsid gene is a determinant of virulence,” Journal of Virology, vol. 84, no. 4, pp. 1752–1763, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. M. Battilani, A. Balboni, M. Bassani, A. Scagliarini, S. Paltrinieri, and S. Prosperi, “Sequence analysis of the nucleocapsid gene of feline coronaviruses circulating in Italy,” The New Microbiologica, vol. 33, no. 4, pp. 387–392, 2010. View at Google Scholar · View at Scopus
  94. I. Kiss, S. Kecskeméti, J. Tanyi, B. Klingeborn, and S. Belák, “Prevalence and genetic pattern of feline coronaviruses in urban cat populations,” Veterinary Journal, vol. 159, no. 1, pp. 64–70, 2000. View at Google Scholar
  95. B. J. Haijema, H. Volders, and P. J. M. Rottier, “Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis,” Journal of Virology, vol. 78, no. 8, pp. 3863–3871, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. N. C. Pedersen, H. Liu, K. A. Dodd, and P. A. Pesavento, “Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis,” Viruses, vol. 1, no. 2, pp. 166–184, 2009. View at Google Scholar
  97. H. W. Chang, R. J. de Groot, H. F. Egberink, and P. J. M. Rottier, “Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene,” The Journal of General Virology, vol. 91, no. 2, pp. 415–420, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. H. Vennema, A. Poland, J. Foley, and N. C. Pedersen, “Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses,” Virology, vol. 243, no. 1, pp. 150–157, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. M. Oostra, C. A. M. de Haan, R. J. de Groot, and P. J. M. Rottier, “Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M,” Journal of Virology, vol. 80, no. 5, pp. 2326–2336, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. H. Vennema, J. W. A. Rossen, J. Wesseling, M. C. Horzinek, and P. J. M. Rottier, “Genomic organization and expression of the 3' end of the canine and feline enteric coronaviruses,” Advances in Experimental Medicine and Biology, vol. 342, pp. 11–16, 1994. View at Google Scholar · View at Scopus
  101. H. Vennema, L. Heijnen, P. J. M. Rottier, M. C. Horzinek, and W. J. M. Spaan, “A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal,” Advances in Experimental Medicine and Biology, vol. 342, pp. 209–214, 1994. View at Google Scholar · View at Scopus
  102. C. N. Lin, B. L. Su, H. P. Huang, J. J. Lee, M. W. Hsieh, and L. L. Chueh, “Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis,” Journal of Feline Medicine and Surgery, vol. 11, no. 6, pp. 413–419, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. J. S. M. Peiris, S. T. Lai, L. L. M. Poon et al., “Coronavirus as a possible cause of severe acute respiratory syndrome,” The Lancet, vol. 361, no. 9366, pp. 1319–1325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Levis, C. B. Cardellichio, C. A. Scanga, S. R. Compton, and K. V. Holmes, “Multiple receptor-dependent steps determine the species specificity of HCV-229E infection,” Advances in Experimental Medicine and Biology, vol. 380, pp. 337–343, 1995. View at Google Scholar · View at Scopus
  105. B. Delmas, J. Gelfi, H. Sjostrom, O. Noren, and H. Laude, “Further characterization of aminopeptidase-N as a receptor for coronaviruses,” Advances in Experimental Medicine and Biology, vol. 342, pp. 293–298, 1994. View at Google Scholar · View at Scopus
  106. D. B. Tresnan, R. Levis, and K. V. Holmes, “Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I,” Journal of Virology, vol. 70, no. 12, pp. 8669–8674, 1996. View at Google Scholar · View at Scopus
  107. L. Benbacer, E. Kut, L. Besnardeau, H. Laude, and B. Delmas, “Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus,” Journal of Virology, vol. 71, no. 1, pp. 734–737, 1997. View at Google Scholar · View at Scopus
  108. S. M. Tusell, S. A. Schittone, and K. V. Holmes, “Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range,” Journal of Virology, vol. 81, no. 3, pp. 1261–1273, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. J. E. Barlough, C. A. Stoddart, G. P. Sorresso, R. H. Jacobson, and F. W. Scott, “Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus,” Laboratory Animal Science Chicago, vol. 34, no. 6, pp. 592–597, 1984. View at Google Scholar · View at Scopus
  110. F. McArdle, M. Bennett, R. M. Gaskell, B. Tennant, D. F. Kelly, and C. J. Gaskell, “Canine coronavirus infection in cats; A possible role in feline infectious peritonitis,” Advances in Experimental Medicine and Biology, vol. 276, pp. 475–480, 1990. View at Google Scholar · View at Scopus
  111. C. A. Stoddart, J. E. Barlough, C. A. Baldwin, and F. W. Scott, “Attempted immunisation of cats against feline infectious peritonitis using canine coronavirus,” Research in veterinary science, vol. 45, no. 3, pp. 383–388, 1988. View at Google Scholar · View at Scopus
  112. V. Benetka, J. Kolodziejek, K. Walk, M. Rennhofer, and K. Möstl, “M gene analysis of atypical strains of feline and canine coronavirus circulating in an Austrian animal shelter,” The Veterinary Record, vol. 159, no. 6, pp. 170–175, 2006. View at Google Scholar · View at Scopus
  113. B. E. E. Martina, B. L. Haagmans, T. Kuiken et al., “SARS virus infection of cats and ferrets,” Nature, vol. 425, no. 6961, p. 915, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus