Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2012, Article ID 163860, 10 pages
http://dx.doi.org/10.1155/2012/163860
Review Article

Immunopathogenic and Neurological Mechanisms of Canine Distemper Virus

1Instituto de Veterinária (IV), Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 7, 23890-000 Seropédica, RJ, Brazil
2Laboratório de Virologia Molecular Animal (LVMA), Departamento de Veterinária, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, 36570-000 Viçosa, MG, Brazil
3Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA

Received 3 March 2012; Revised 2 October 2012; Accepted 11 October 2012

Academic Editor: Alain Kohl

Copyright © 2012 Otávio Valério Carvalho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. C. Harder and A. D. M. E. Osterhaus, “Canine distemper virus—a morbillivirus in search of new hosts?” Trends in Microbiology, vol. 5, no. 3, pp. 120–124, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. M. W. G. van de Bildt, T. Kuiken, A. M. Visee, S. Lema, T. R. Fitzjohn, and A. D. M. E. Osterhaus, “Distemper outbreak and its effect on African wild dog conservation,” Emerging Infectious Diseases, vol. 8, no. 2, pp. 211–213, 2002. View at Google Scholar · View at Scopus
  3. M. J. Appel, R. A. Yates, G. L. Foley et al., “Canine distemper epizootic in lions, tigers, and leopards in North America,” Journal of Veterinary Diagnostic Investigation, vol. 6, no. 3, pp. 277–288, 1994. View at Google Scholar · View at Scopus
  4. S. Kennedy, “Morbillivirus infections in aquatic mammals,” Journal of Comparative Pathology, vol. 119, no. 3, pp. 201–225, 1998. View at Google Scholar · View at Scopus
  5. T. C. Harder, M. Kenter, H. Vos et al., “Canine distemper virus from diseased large felids: biological properties and phylogenetic relationships,” Journal of General Virology, vol. 77, no. 3, pp. 397–405, 1996. View at Google Scholar · View at Scopus
  6. V. Martella, G. Elia, and C. Buonavoglia, “Canine distemper virus,” Veterinary Clinics of North America: Small Animal Practice, vol. 38, no. 4, pp. 787–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. V. von Messling, C. Springfeld, P. Devaux, and R. Cattaneo, “A ferret model of canine distemper virus virulence and immunosuppression,” Journal of Virology, vol. 77, no. 23, pp. 12579–12591, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. E. Griffin, “Measles virus,” in Fields Virology, D. M. Knipe, P. M. Howley, D. E. Griffin et al., Eds., vol. 5, pp. 1551–1585, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2007. View at Google Scholar
  9. P. B. Rossiter, “Rinderpest,” in Infectious Diseases of LivesTock with Special Reference to South Africa, J. A. W. Coetzer, G. R. Thompson, R. C. Tustin, and N. P. Kriek, Eds., vol. 2, pp. 735–757, Oxford University Press, Cape Town, South Africa, 1994. View at Google Scholar
  10. T. Barrett and P. B. Rossiter, “Rinderpest: the disease and its impact on humans and animals,” Advances in Virus Research, vol. 53, pp. 89–110, 1999. View at Google Scholar · View at Scopus
  11. M. J. G. Appel, W. R. Shek, and B. A. Summers, “Lymphocyte-mediated immune cytotoxicity in dogs infected with virulent canine distemper virus,” Infection and Immunity, vol. 37, no. 2, pp. 592–600, 1982. View at Google Scholar · View at Scopus
  12. B. Hanratty, T. Holt, E. Duffell et al., “UK measles outbreak in non-immune anthroposophic communities: the implications for the elimination of measles from Europe,” Epidemiology and Infection, vol. 125, no. 2, pp. 377–383, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Dhar, B. P. Sreenivasa, T. Barrett, M. Corteyn, R. P. Singh, and S. K. Bandyopadhyay, “Recent epidemiology of peste des petits ruminants virus (PPRV),” Veterinary Microbiology, vol. 88, no. 2, pp. 153–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. V. von Messling, D. Milosevic, and R. Cattaneo, “Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 39, pp. 14216–14221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Beineke, C. Puff, F. Seehusen, and W. Baumgärtner, “Pathogenesis and immunopathology of systemic and nervous canine distemper,” Veterinary Immunology and Immunopathology, vol. 127, no. 1-2, pp. 1–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Pratelli, “Canine distemper virus: the emergence of new variants,” The Veterinary Journal, vol. 187, no. 3, pp. 290–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. Pardo, J. E. Bauman, and M. Mackowiak, “Protection of dogs against canine distemper by vaccination with a canarypox virus recombinant expressing canine distemper virus fusion and hemagglutinin glycoproteins,” American Journal of Veterinary Research, vol. 58, no. 8, pp. 833–836, 1997. View at Google Scholar · View at Scopus
  18. M. Vandevelde and A. Zurbriggen, “The neurobiology of canine distemper virus infection,” Veterinary Microbiology, vol. 44, no. 2–4, pp. 271–280, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Vandevelde and A. Zurbriggen, “Demyelination in canine distemper virus infection: a review,” Acta Neuropathologica, vol. 109, no. 1, pp. 56–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Krakowka, R. J. Higgins, and A. Koestner, “Canine distemper virus: review of structural and functional modulations in lymphoid tissues,” American Journal of Veterinary Research, vol. 41, no. 2, pp. 284–292, 1980. View at Google Scholar · View at Scopus
  21. S. Krakowka, “Mechanisms of in vitro immunosuppression in canine distemper virus infection,” Journal of Clinical and Laboratory Immunology, vol. 8, no. 3, pp. 187–196, 1982. View at Google Scholar · View at Scopus
  22. A. Tipold, M. Vandevelde, and A. Jaggy, “Neurological manifestations of canine distemper virus infection,” Journal of Small Animal Practice, vol. 33, no. 10, pp. 466–470, 1992. View at Publisher · View at Google Scholar
  23. R. L. de Swart, M. Ludlow, L. de Witte et al., “Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques,” PLoS Pathogens, vol. 3, no. 11, pp. 1771–1781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. A. Rudd, R. Cattaneo, and V. von Messling, “Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion,” Journal of Virology, vol. 80, no. 19, pp. 9361–9370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. B. G. Cocks, C. C. J. Chang, J. M. Carballido, H. Yssel, J. E. de Vries, and G. Aversa, “A novel receptor involved in T-cell activation,” Nature, vol. 376, no. 6537, pp. 260–263, 1995. View at Google Scholar · View at Scopus
  26. P. L. Schwartzberg, K. L. Mueller, H. Qi, and J. L. Cannons, “SLAM receptors and SAP influence lymphocyte interactions, development and function,” Nature Reviews Immunology, vol. 9, no. 1, pp. 39–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. D. Baron, “Wild-type Rinderpest virus uses SLAM (CD150) as its receptor,” Journal of General Virology, vol. 86, no. 6, pp. 1753–1757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Tatsuo, N. Ono, K. Tanaka, and Y. Yanagi, “SLAM (CDw150) is a cellular receptor for measles virus,” Nature, vol. 406, no. 6798, pp. 893–897, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Kumada, K. Komase, and T. Nakayama, “Recombinant measles AIK-C strain expressing current wild-type hemagglutinin protein,” Vaccine, vol. 22, no. 3-4, pp. 309–316, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. V. von Messling, G. Zimmer, G. Herrler, L. Haas, and R. Cattaneo, “The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity,” Journal of Virology, vol. 75, no. 14, pp. 6418–6427, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Seki, N. Ono, R. Yamaguchi, and Y. Yanagi, “Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD150) and their adaptability to marmoset B95a cells,” Journal of Virology, vol. 77, no. 18, pp. 9943–9950, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. S. Noyce, D. G. Bondre, M. N. Ha et al., “Tumor cell marker PVRL4 (Nectin 4) is an epithelial cell receptor for measles virus,” PLoS Pathogen, vol. 7, no. 8, Article ID e1002240, 2011. View at Google Scholar
  33. N. Reymond, S. Fabre, E. Lecocq, J. Adelaïde, P. Dubreuil, and M. Lopez, “Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction,” The Journal of Biological Chemistry, vol. 276, no. 46, pp. 43205–43215, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, “Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor,” Science, vol. 280, no. 5369, pp. 1618–1620, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Ogita, Y. Rikitake, J. Miyoshi, and Y. Takai, “Cell adhesion molecules nectins and associating proteins: implications for physiology and pathology,” Proceedings of the Japan Academy Series B, vol. 86, no. 6, pp. 621–629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. D. Mühlebach, M. Mateo, P. L. Sinn et al., “Adherens junction protein nectin-4 (PVRL4) is the epithelial receptor for measles virus,” Nature, vol. 480, no. 7378, pp. 530–533, 2011. View at Google Scholar
  37. V. Racaniello, “Virology. An exit strategy for measles virus,” Science, vol. 334, no. 6063, pp. 1650–1651, 2011. View at Publisher · View at Google Scholar
  38. R. S. Noyce and C. D. Richardson, “Nectin 4 is the epithelial cell receptor for measles virus,” Trends in Microbiology, vol. 20, no. 9, pp. 429–439, 2012. View at Publisher · View at Google Scholar
  39. A. F. Koutinas, W. Baumgärtner, D. Tontis, Z. Polizopoulou, M. N. Saridomichelakis, and S. Lekkas, “Histopathology and immunohistochemistry of canine distemper virus-induced footpad hyperkeratosis (hard pad disease) in dogs with natural canine distemper,” Veterinary Pathology, vol. 41, no. 1, pp. 2–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Baumgärtner, C. Örvell, and M. Reinacher, “Naturally occurring canine distemper virus encephalitis: distribution and expression of viral polypeptides in nervous tissues,” Acta Neuropathologica, vol. 78, no. 5, pp. 504–512, 1989. View at Google Scholar · View at Scopus
  41. D. Laine, J. M. Bourhis, S. Longhi et al., “Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL-NR and NCORE-FcγRIIB1 interactions, respectively,” Journal of General Virology, vol. 86, no. 6, pp. 1771–1784, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Tatsuo, N. Ono, and Y. Yanagi, “Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors,” Journal of Virology, vol. 75, no. 13, pp. 5842–5850, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. V. von Messling, N. Svitek, and R. Cattaneo, “Receptor (SLAM [CD150]) recognition and the V protein sustain swift lymphocyte-based invasion of mucosal tissue and lymphatic organs by a morbillivirus,” Journal of Virology, vol. 80, no. 12, pp. 6084–6092, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Okada, F. Kobune, T. A. Sato et al., “Extensive lymphopenia due to apoptosis of uninfected lymphocytes in acute measles patients,” Archives of Virology, vol. 145, no. 5, pp. 905–920, 2000. View at Google Scholar · View at Scopus
  45. L. M. Esolen, S. W. Park, J. M. Hardwick, and D. E. Griffin, “Apoptosis as a cause of death in measles virus-infected cells,” Journal of Virology, vol. 69, no. 6, pp. 3955–3958, 1995. View at Google Scholar · View at Scopus
  46. J. C. Marie, F. Saltel, J. M. Escola, P. Jurdic, T. F. Wild, and B. Horvat, “Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression,” Journal of Virology, vol. 78, no. 21, pp. 11952–11961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Schneider-Schaulies and U. Dittmer, “Silencing T cells or T-cell silencing: concepts in virus-induced immunosuppression,” Journal of General Virology, vol. 87, no. 6, pp. 1423–1438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Iwatsuki, M. Okita, F. Ochikubo et al., “Immunohistochemical analysis of the lymphoid organs of dogs naturally infected with canine distemper virus,” Journal of Comparative Pathology, vol. 113, no. 2, pp. 185–190, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Wünschmann, E. Kremmer, and W. Baumgärtner, “Phenotypical characterization of T and B cell areas in lymphoid tissues of dogs with spontaneous distemper,” Veterinary Immunology and Immunopathology, vol. 73, no. 1, pp. 83–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Kumagai, R. Yamaguchi, K. Uchida, and S. Tateyama, “Lymphoid apoptosis in acute canine distemper,” Journal of Veterinary Medical Science, vol. 66, no. 2, pp. 175–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Moro, A. S. Martins, C. M. Alves et al., “Apoptosis in canine distemper,” Archives of Virology, vol. 148, no. 1, pp. 153–164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Tipold, M. Vandevelde, R. Wittek, P. Moore, A. Summerfield, and A. Zurbriggen, “Partial protection and intrathecal invasion of CD8+ T cells in acute canine distemper virus infection,” Veterinary Microbiology, vol. 83, no. 3, pp. 189–203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Schobesberger, A. Summerfield, M. G. Doherr, A. Zurbriggen, and C. Griot, “Canine distemper virus-induced depletion of uninfected lymphocytes is associated with apoptosis,” Veterinary Immunology and Immunopathology, vol. 104, no. 1-2, pp. 33–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Moro, A. S. Martins, C. M. Alves, F. G. A. Santos, H. L. Del Puerto, and A. C. Vasconcelos, “Apoptosis in the cerebellum of dogs with distemper,” Journal of Veterinary Medicine, Series B, vol. 50, no. 5, pp. 221–225, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. N. W. Palm and R. Medzhitov, “Pattern recognition receptors and control of adaptive immunity,” Immunological Reviews, vol. 227, no. 1, pp. 221–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Goodbourn, L. Didcock, and R. E. Randall, “Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures,” Journal of General Virology, vol. 81, no. 10, pp. 2341–2364, 2000. View at Google Scholar · View at Scopus
  57. G. R. Stark, I. M. Kerr, B. R. G. Williams, R. H. Silverman, and R. D. Schreiber, “How cells respond to interferons,” Annual Review of Biochemistry, vol. 67, pp. 227–264, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Röthlisberger, D. Wiener, M. Schweizer, E. Peterhans, A. Zurbriggen, and P. Plattet, “Two domains of the V protein of virulent canine distemper virus selectively inhibit STAT1 and STAT2 nuclear import,” Journal of Virology, vol. 84, no. 13, pp. 6328–6343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Griot, M. Vandevelde, M. Schobesberger, and A. Zurbriggen, “Canine distemper, a re-emerging morbillivirus with complex neuropathogenic mechanisms,” Animal Health Research Reviews, vol. 4, no. 1, pp. 1–10, 2003. View at Google Scholar · View at Scopus
  60. F. Seehusen, E. A. Orlando, K. Wewetzer, and W. Baumgärtner, “Vimentin-positive astrocytes in canine distemper: a target for canine distemper virus especially in chronic demyelinating lesions?” Acta Neuropathologica, vol. 114, no. 6, pp. 597–608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. J. A. Miele and S. Krakowka, “Antibody responses to virion polypeptides in gnotobiotic dogs infected with canine distemper virus,” Infection and Immunity, vol. 41, no. 2, pp. 869–871, 1983. View at Google Scholar · View at Scopus
  62. B. K. Rima, N. Duffy, W. J. Mitchell, B. A. Summers, and M. J. G. Appel, “Correlation between humoral immune responses and presence of virus in the CNS in dogs experimentally infected with canine distemper virus,” Archives of Virology, vol. 121, no. 1–4, pp. 1–8, 1991. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Krakowka, R. Olsen, A. Confer, A. Koestner, and B. McCullough, “Serologic response to canine distemper viral antigens in gnotobiotic dogs infected with canine distemper virus,” Journal of Infectious Diseases, vol. 132, no. 4, pp. 384–392, 1975. View at Google Scholar · View at Scopus
  64. W. S. Lima, R. D. Kouyos, R. J. Adams, B. T. Grenfell, and D. E. Griffin, “Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 37, pp. 14989–14994, 2012. View at Publisher · View at Google Scholar
  65. C. K. Ho and L. A. Babiuk, “Immune mechanisms against canine distemper. III. Role of complement lysis in the immunity and persistent infection of canine distemper virus,” Immunology, vol. 39, no. 2, pp. 231–237, 1980. View at Google Scholar · View at Scopus
  66. A. Wünschmann, S. Alldinger, E. Kremmer, and W. Baumgärtner, “Identification of CD4+ and CD8+ T cell subsets and B cells in the brain of dogs with spontaneous acute, subacute-, and chronic-demyelinating distemper encephalitis,” Veterinary Immunology and Immunopathology, vol. 67, no. 2, pp. 101–116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. S. S. Ringler and S. Krakowka, “Effects of canine distemper virus on natural killer cell activity in dogs,” American Journal of Veterinary Research, vol. 46, no. 8, pp. 1781–1786, 1985. View at Google Scholar · View at Scopus
  68. S. Alldinger, W. Baumgärtner, and C. Orvell, “Restricted expression of viral surface proteins in canine distemper encephalitis,” Acta Neuropathologica, vol. 85, no. 6, pp. 635–645, 1993. View at Google Scholar · View at Scopus
  69. C. K. Ho and L. A. Babiuk, “Immune mechanisms against canine distemper. II. Role of antibody in antigen modulation and prevention of intercellular and extracellular spread of canine distemper virus,” Immunology, vol. 38, no. 4, pp. 765–772, 1979. View at Google Scholar · View at Scopus
  70. J. D. Gerber and A. E. Marron, “Cell-mediated immunity and age at vaccination associated with measles inoculation and protection of dogs against canine distemper,” American Journal of Veterinary Research, vol. 37, no. 2, pp. 133–138, 1976. View at Google Scholar · View at Scopus
  71. A. Zurbriggen, H. U. Graber, A. Wagner, and M. Vandevelde, “Canine distemper virus persistence in the nervous system is associated with noncytolytic selective virus spread,” Journal of Virology, vol. 69, no. 3, pp. 1678–1686, 1995. View at Google Scholar · View at Scopus
  72. A. Zurbriggen, H. U. Graber, and M. Vandevelde, “Selective spread and reduced virus release leads to canine distemper virus persistence in the nervous system,” Veterinary Microbiology, vol. 44, no. 2–4, pp. 281–288, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. B. A. Summers, J. F. Cummings, and A. de Lahunta, Veterinary Neuropathology, Mosby, St. Louis, Mo, USA, 1995.
  74. A. Tipold, A. Jaggy, A. Zurbriggen, and M. Vandevelde, “Neurological signs in canine distemper encephalomyelitis—a clinical study,” The European Journal of Companion Animal Practice, vol. 6, pp. 33–38, 1996. View at Google Scholar
  75. R. J. Higgins, S. G. Krakowka, A. E. Metzler, and A. Koestner, “Primary demyelination in experimental canine distemper virus induced encephalomyelitis in gnotobiotic dogs. Sequential immunological and morphological findings,” Acta Neuropathologica, vol. 58, no. 1, pp. 1–8, 1982. View at Google Scholar · View at Scopus
  76. S. A. Headley, D. L. Graça, and I. C. Soares, “Glial fibrillary acidic protein (GFAP)—immunoreactive astrocytes in dogs infected with canine distemper virus,” Journal of Comparative Pathology, vol. 125, no. 2-3, pp. 90–97, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Wyss-Fluehmann, A. Zurbriggen, M. Vandevelde, and P. Plattet, “Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein,” Acta Neuropathologica, vol. 119, no. 5, pp. 617–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Barben, M. Stettler, A. Jaggy, M. Vandevelde, and A. Zurbriggen, “Detection of IgM antibodies against a recombinant nucleocapsid protein of canine distemper virus in dog sera using a dot-blot assay,” Journal of Veterinary Medicine, vol. 46, no. 2, pp. 115–121, 1999. View at Google Scholar · View at Scopus
  79. A. Tipold, P. Moore, A. Zurbriggen, I. Burgener, G. Barben, and M. Vandevelde, “Early T cell response in the central nervous system in canine distemper virus infection,” Acta Neuropathologica, vol. 97, no. 1, pp. 45–56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. C. M. S. Gebara, S. R. Wosiacki, F. J. Negrão, D. B. de Oliveira, S. N. E. Beloni, and A. A. Alfieri, “Detection of canine distemper virus nucleoprotein gene by RT-PCR in urine of dogs with distemper clinical signs,” Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, vol. 56, no. 4, pp. 480–487, 2004. View at Google Scholar · View at Scopus
  81. G. J. Sips, D. Chesik, L. Glazenburg, J. Wilschut, J. de Keyser, and N. Wilczak, “Involvement of morbilliviruses in the pathogenesis of demyelinating disease,” Reviews in Medical Virology, vol. 17, no. 4, pp. 223–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. C. F. Müller, R. S. Fatzer, K. Beck, M. Vandevelde, and A. Zurbriggen, “Studies on canine distemper virus persistence in the central nervous system,” Acta Neuropathologica, vol. 89, no. 5, pp. 438–445, 1995. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Vandevelde, A. Zurbriggen, R. J. Higgins, and D. Palmer, “Spread and distribution of viral antigen in nervous canine distemper,” Acta Neuropathologica, vol. 67, no. 3-4, pp. 211–218, 1985. View at Google Scholar · View at Scopus
  84. F. Mutinelli, M. Vandevelde, C. Griot, and A. Richard, “Astrocytic infection in canine distemper virus-induced demyelination,” Acta Neuropathologica, vol. 77, no. 3, pp. 333–335, 1989. View at Google Scholar · View at Scopus
  85. W. F. Blakemore, B. A. Summers, and M. G. J. Appel, “Evidence of oligodendrocyte infection and degeneration in canine distemper encephalomyelitis,” Acta Neuropathologica, vol. 77, no. 5, pp. 550–553, 1989. View at Google Scholar · View at Scopus
  86. B. A. Summers and M. J. G. Appel, “Demyelination in canine distemper encephalitis: an ultrastructural analysis,” Journal of Neurocytology, vol. 16, no. 6, pp. 871–881, 1987. View at Google Scholar · View at Scopus
  87. A. Zurbriggen, I. Schmid, H. U. Graber, and M. Vandevelde, “Oligodendroglial pathology in canine distemper,” Acta Neuropathologica, vol. 95, no. 1, pp. 71–77, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Glaus, C. Griot, A. Richard, U. Althaus, N. Herschkowitz, and M. Vandevelde, “Ultrastructural and biochemical findings in brain cell cultures infected with canine distemper virus,” Acta Neuropathologica, vol. 80, no. 1, pp. 59–67, 1990. View at Google Scholar · View at Scopus
  89. V. M. Stein, M. Czub, N. Schreiner et al., “Microglial cell activation in demyelinating canine distemper lesions,” Journal of Neuroimmunology, vol. 153, no. 1-2, pp. 122–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. Q. Miao, W. Baumagärtner, K. Failing, and S. Alldinger, “Phase-dependent expression of matrix metalloproteinases and their inhibitors in demyelinating canine distemper encephalitis,” Acta Neuropathologica, vol. 106, no. 5, pp. 486–494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. B. K. Rima and W. P. Duprex, “Morbilliviruses and human disease,” Journal of Pathology, vol. 208, no. 2, pp. 199–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. L. G. Shell, “Canine distemper,” The Veterinary Clinics of North America: Small Animal Practice, vol. 12, pp. 173–179, 1990. View at Google Scholar
  93. K. G. Braund, Clinical Syndromes in Veterinary Neurology, vol. 2, Mosby, St. Louis, Mo, USA, 1994.
  94. B. Krone, F. Oeffner, and J. M. Grange, “Is the risk of multiple sclerosis related to the “biography” of the immune system?” Journal of Neurology, vol. 256, no. 7, pp. 1052–1060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. S. A. Headley and D. L. Graça, “Canine distemper: epidemiological findings of 250 cases,” Brazilian Journal of Veterinary Research and Animal Science, vol. 37, pp. 136–140, 2000. View at Google Scholar
  96. T. A. Rude, “Canine distemper virus: infection and prevention,” Canine Practice, vol. 14, pp. 16–24, 1987. View at Google Scholar
  97. M. K. Axthelm and S. Krakowka, “Experimental old dog encephalitis (ODE) in a gnotobiotic dog,” Veterinary Pathology, vol. 35, no. 6, pp. 527–534, 1998. View at Google Scholar · View at Scopus
  98. R. J. Higgins, G. Child, and M. Vandevelde, “Chronic relapsing demyelinating encephalomyelitis associated with persistent spontaneous canine distemper virus infection,” Acta Neuropathologica, vol. 77, no. 4, pp. 441–444, 1989. View at Google Scholar · View at Scopus
  99. M. Vandevelde, R. Fankhauser, F. Kristensen, and B. Kristensen, “Immunoglobulins in demyelinating lesions in canine distemper encephalitis. An immunohistological study,” Acta Neuropathologica, vol. 54, no. 1, pp. 31–41, 1981. View at Google Scholar · View at Scopus
  100. M. Vandevelde, R. J. Higgins, B. Kristensen, F. Kristensen, A. J. Steck, and U. Kihm, “Demyelination in experimental canine distemper virus infection: immunological, pathologic, and immunohistological studies,” Acta Neuropathologica, vol. 56, no. 4, pp. 285–293, 1982. View at Google Scholar · View at Scopus