Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2013, Article ID 487585, 8 pages
Review Article

Cellular Factors Implicated in Filovirus Entry

1University of Mumbai and Department of Atomic Energy-Centre for Excellence in Basic Sciences, Health Centre Building, Vidyanagari, Kalina, Santacruz East, Mumbai 400098, India
2Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Superior Avenue, Chicago, IL 60611, USA

Received 18 October 2012; Revised 17 December 2012; Accepted 18 December 2012

Academic Editor: Amiya K. Banerjee

Copyright © 2013 Suchita Bhattacharyya and Thomas J. Hope. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Although filoviral infections are still occurring in different parts of the world, there are no effective preventive or treatment strategies currently available against them. Not only do filoviruses cause a deadly infection, but they also have the potential of being used as biological weapons. This makes it imperative to comprehensively study these viruses in order to devise effective strategies to prevent the occurrence of these infections. Entry is the foremost step in the filoviral replication cycle and different studies have reported the involvement of a myriad of cellular factors including plasma membrane components, cytoskeletal proteins, endosomal components, and cytosolic factors in this process. Signaling molecules such as the TAM family of receptor tyrosine kinases comprising of Tyro3, Axl, and Mer have also been implicated as putative entry factors. Additionally, filoviruses are suggested to bind to a common receptor and recent studies have proposed T-cell immunoglobulin and mucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) as potential receptor candidates. This paper summarizes the existing literature on filoviral entry with a special focus on cellular factors involved in this process and also highlights some fundamental questions. Future research aimed at answering these questions could be very useful in designing novel antiviral therapeutics.