Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2013, Article ID 738794, 17 pages
http://dx.doi.org/10.1155/2013/738794
Review Article

Viruses as Modulators of Mitochondrial Functions

1Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
2Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
3School of Public Health, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3

Received 26 June 2013; Accepted 30 August 2013

Academic Editor: Michael Bukrinsky

Copyright © 2013 Sanjeev K. Anand and Suresh K. Tikoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Wallace, “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annual Review of Genetics, vol. 39, pp. 359–407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. C. Chan, “Mitochondria: dynamic organelles in disease, aging, and development,” Cell, vol. 125, no. 7, pp. 1241–1252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Antignani and R. J. Youle, “How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane?” Current Opinion in Cell Biology, vol. 18, no. 6, pp. 685–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Chen and D. C. Chan, “Emerging functions of mammalian mitochondrial fusion and fission,” Human Molecular Genetics, vol. 14, no. 2, pp. R283–R289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Gradzka, “Mechanisms and regulation of the programmed cell death,” Postepy Biochemii, vol. 52, no. 2, pp. 157–165, 2006. View at Google Scholar · View at Scopus
  6. H. M. McBride, M. Neuspiel, and S. Wasiak, “Mitochondria: more than just a powerhouse,” Current Biology, vol. 16, no. 14, pp. R551–R560, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Kroemer, L. Galluzzi, and C. Brenner, “Mitochondrial membrane permeabilization in cell death,” Physiological Reviews, vol. 87, no. 1, pp. 99–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. A. Mannella, “Structure and dynamics of the mitochondrial inner membrane cristae,” Biochimica et Biophysica Acta, vol. 1763, no. 5-6, pp. 542–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. G. Hardie, J. W. Scott, D. A. Pan, and E. R. Hudson, “Management of cellular energy by the AMP-activated protein kinase system,” The FEBS Letters, vol. 546, no. 1, pp. 113–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. G. Jones, D. R. Plas, S. Kubek et al., “AMP-activated protein kinase induces a p53-dependent metabolic checkpoint,” Molecular Cell, vol. 18, no. 3, pp. 283–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Mandal, P. Guptan, E. Owusu-Ansah, and U. Banerjee, “Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila,” Developmental Cell, vol. 9, no. 6, pp. 843–854, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. E. Bakeeva, Y. S. Chentsov, and V. P. Skulachev, “Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle,” Biochimica et Biophysica Acta, vol. 501, no. 3, pp. 349–369, 1978. View at Google Scholar · View at Scopus
  13. L. E. Bakeeva, Y. S. Chentsov, and V. P. Shulachev, “Intermitochondrial contacts in myocardiocytes,” Journal of Molecular and Cellular Cardiology, vol. 15, no. 7, pp. 413–420, 1983. View at Google Scholar · View at Scopus
  14. S. Honda and S. Hirose, “Stage-specific enhanced expression of mitochondrial fusion and fission factors during spermatogenesis in rat testis,” Biochemical and Biophysical Research Communications, vol. 311, no. 2, pp. 424–432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. R. B. Seth, L. Sun, C. K. Ea, and Z. J. Chen, “Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3,” Cell, vol. 122, no. 5, pp. 669–682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Bossy-Wetzel, M. J. Barsoum, A. Godzik, R. Schwarzenbacher, and S. A. Lipton, “Mitochondrial fission in apoptosis, neurodegeneration and aging,” Current Opinion in Cell Biology, vol. 15, no. 6, pp. 706–716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. W. Olanow and W. G. Tatton, “Etiology and pathogenesis of Parkinson's disease,” Annual Review of Neuroscience, vol. 22, pp. 123–144, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. van den Eeden, C. M. Tanner, A. L. Bernstein et al., “Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity,” The American Journal of Epidemiology, vol. 157, no. 11, pp. 1015–1022, 2003. View at Google Scholar · View at Scopus
  19. L. J. Martin, “Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 12, pp. 1103–1110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. McFarland, R. W. Taylor, and D. M. Turnbull, “Mitochondrial disease—its impact, etiology, and pathology,” in Current Topics in Developmental Biology, J. C. St John, Ed., pp. 113–155, Academic Press, New York, NY, USA, 2007. View at Google Scholar
  21. D. Rapaport, “Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins,” EMBO Reports, vol. 4, no. 10, pp. 948–952, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Amiry-Moghaddam, H. Lindland, S. Zelenin et al., “Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane,” FASEB Journal, vol. 19, no. 11, pp. 1459–1467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Calamita, D. Ferri, P. Gena et al., “The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 17149–17153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Yang, D. Zhao, and A. S. Verkman, “Evidence against functionally significant aquaporin expression in mitochondria,” The Journal of Biological Chemistry, vol. 281, no. 24, pp. 16202–16206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. G. S. Shadel and D. A. Clayton, “Mitochondrial DNA maintenance in vertebrates,” Annual Review of Biochemistry, vol. 66, pp. 409–435, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. E. A. Shoubridge, “The ABcs of mitochondrial transcription,” Nature Genetics, vol. 31, no. 3, pp. 227–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Burger, M. W. Gray, and B. F. Lang, “Mitochondrial genomes: anything goes,” Trends in Genetics, vol. 19, no. 12, pp. 709–716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Neupert and J. M. Herrmann, “Translocation of proteins into mitochondria,” Annual Review of Biochemistry, vol. 76, pp. 723–749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Chacinska, C. M. Koehler, D. Milenkovic, T. Lithgow, and N. Pfanner, “Importing mitochondrial proteins: machineries and mechanisms,” Cell, vol. 138, no. 4, pp. 628–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Schmidt, N. Pfanner, and C. Meisinger, “Mitochondrial protein import: from proteomics to functional mechanisms,” Nature Reviews Molecular Cell Biology, vol. 11, no. 9, pp. 655–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. van der Laan, D. P. Hutu, and P. Rehling, “On the mechanism of preprotein import by the mitochondrial presequence translocase,” Biochimica et Biophysica Acta, vol. 1803, no. 6, pp. 732–739, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. J. Habib, T. Waizenegger, M. Lech, W. Neupert, and D. Rapaport, “Assembly of the TOB complex of mitochondria,” The Journal of Biological Chemistry, vol. 280, no. 8, pp. 6434–6440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Schwann, “Microscopical researches into the accordance in the structure and growth of animals and plants,” in Contributions to Phytogenesis, M. J. Schleiden, Ed., Sydenham Society, London, UK, 1847. View at Google Scholar
  34. M. J. Berridge, M. D. Bootman, and P. Lipp, “Calcium—a life and death signal,” Nature, vol. 395, no. 6703, pp. 645–648, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. D. R. Green and J. C. Reed, “Mitochondria and apoptosis,” Science, vol. 281, no. 5381, pp. 1309–1312, 1998. View at Google Scholar · View at Scopus
  36. S. V. Chorna, V. I. Dosenko, N. A. Strutyns'ka, H. L. Vavilova, and V. F. Sahach, “Increased expression of voltage-dependent anion channel and adenine nucleotide translocase and the sensitivity of calcium-induced mitochondrial permeability transition opening pore in the old rat heart,” Fiziolohichnyǐ Zhurnal, vol. 56, no. 4, pp. 19–25, 2010. View at Google Scholar · View at Scopus
  37. Y. Liu, L. Gao, Q. Xue et al., “Voltage-dependent anion channel involved in the mitochondrial calcium cycle of cell lines carrying the mitochondrial DNA A4263G mutation,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 364–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Kirichok, G. Krapivinsky, and D. E. Clapham, “The mitochondrial calcium uniporter is a highly selective ion channel,” Nature, vol. 427, no. 6972, pp. 360–364, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. T. E. Gunter and K. K. Gunter, “Uptake of calcium by mitochondria: transport and possible function,” IUBMB Life, vol. 52, no. 3–5, pp. 197–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Szabadkai, K. Bianchi, P. Várnai et al., “Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels,” Journal of Cell Biology, vol. 175, no. 6, pp. 901–911, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. A. P. Halestrap, “What is the mitochondrial permeability transition pore?” Journal of Molecular and Cellular Cardiology, vol. 46, no. 6, pp. 821–831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. P. Halestrap, “A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection,” Biochemical Society Transactions, vol. 38, no. 4, pp. 841–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Hüttemann, I. Lee, A. Pecinova, P. Pecina, K. Przyklenk, and J. W. Doan, “Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease,” Journal of Bioenergetics and Biomembranes, vol. 40, no. 5, pp. 445–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Petronilli, B. Persson, M. Zoratti, J. Rydstrom, and G. F. Azzone, “Flow-force relationships during energy transfer between mitochondrial proton pumps,” Biochimica et Biophysica Acta, vol. 1058, no. 2, pp. 297–303, 1991. View at Google Scholar · View at Scopus
  45. W. Xia, Y. Shen, H. Xie, and S. Zheng, “Involvement of endoplasmic reticulum in hepatitis B virus replication,” Virus Research, vol. 121, no. 2, pp. 116–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. W. J. H. Koopman, L. G. J. Nijtmans, C. E. J. Dieteren et al., “Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation,” Antioxidants and Redox Signaling, vol. 12, no. 12, pp. 1431–1470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. A. Susin, H. K. Lorenzo, N. Zamzami et al., “Molecular characterization of mitochodrial apoptosis-inducing factor,” Nature, vol. 397, no. 6718, pp. 441–446, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. R. S. Balaban, “The role of Ca2+ signaling in the coordination of mitochondrial ATP production with cardiac work,” Biochimica et Biophysica Acta, vol. 1787, no. 11, pp. 1334–1341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. E. Wernette, R. S. Ochs, and H. A. Lardy, “Ca2+ stimulation of rat liver mitochondrial glycerophosphate dehydrogenase,” The Journal of Biological Chemistry, vol. 256, no. 24, pp. 12767–12771, 1981. View at Google Scholar · View at Scopus
  50. J. G. McCormack and R. M. Denton, “Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism,” Developmental Neuroscience, vol. 15, no. 3–5, pp. 165–173, 1993. View at Google Scholar · View at Scopus
  51. V. Mildaziene, R. Baniene, Z. Nauciene et al., “Calcium indirectly increases the control exerted by the adenine nucleotide translocator over 2-oxoglutarate oxidation in rat heart mitochondria,” Archives of Biochemistry and Biophysics, vol. 324, no. 1, pp. 130–134, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. R. A. Haworth, D. R. Hunter, and H. A. Berkoff, “Contracture in isolated adult rat heart cells. Role of Ca2+, ATP, and compartmentation,” Circulation Research, vol. 49, no. 5, pp. 1119–1128, 1981. View at Google Scholar · View at Scopus
  53. J. A. Copello, S. Barg, A. Sonnleitner et al., “Differential activation by Ca2+, ATP and caffeine of cardiac and skeletal muscle ryanodine receptors after block by Mg2+,” Journal of Membrane Biology, vol. 187, no. 1, pp. 51–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Nasr, H. I. Gursahani, Z. Pang et al., “Influence of cytosolic and mitochondrial Ca2+, ATP, mitochondrial membrane potential, and calpain activity on the mechanism of neuron death induced by 3-nitropropionic acid,” Neurochemistry International, vol. 43, no. 2, pp. 89–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. J. D. Johnston and M. D. Brand, “The mechanism of Ca2+ stimulation of citrulline and N-acetylglutamate synthesis by mitochondria,” Biochimica et Biophysica Acta, vol. 1033, no. 1, pp. 85–90, 1990. View at Publisher · View at Google Scholar · View at Scopus
  56. J. D. McGivan, N. M. Bradford, and J. Mendes-Mourão, “The regulation of carbamoyl phosphate synthase activity in rat liver mitochondria,” Biochemical Journal, vol. 154, no. 2, pp. 415–421, 1976. View at Google Scholar · View at Scopus
  57. T. I. Peng and M. J. Jou, “Oxidative stress caused by mitochondrial calcium overload,” Annals of the New York Academy of Sciences, vol. 1201, pp. 183–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Lund and B. Ziola, “Cell sonicates used in the analysis of how measles and herpes simplex type 1 virus infections influence Vero cell mitochondrial calcium uptake,” Canadian Journal of Biochemistry and Cell Biology, vol. 63, no. 11, pp. 1194–1197, 1985. View at Google Scholar · View at Scopus
  59. Y. Li, D. F. Boehning, T. Qian, V. L. Popov, and S. A. Weinman, “Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity,” FASEB Journal, vol. 21, no. 10, pp. 2474–2485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. R. V. Campbell, Y. Yang, T. Wang et al., “Effects of hepatitis C core protein on mitochondrial electron transport and production of reactive oxygen species,” Methods in Enzymology, vol. 456, pp. 363–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Gong, G. Waris, R. Tanveer, and A. Siddiqui, “Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9599–9604, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Kalamvoki and P. Mavromara, “Calcium-dependent calpain proteases are implicated in processing of the hepatitis C virus NS5A protein,” Journal of Virology, vol. 78, no. 21, pp. 11865–11878, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. N. Dionisio, M. V. Garcia-Mediavilla, S. Sanchez-Campos et al., “Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes,” Journal of Hepatology, vol. 50, no. 5, pp. 872–882, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. M. K. Baum, S. Sales, D. T. Jayaweera et al., “Coinfection with hepatitis C virus, oxidative stress and antioxidant status in HIV-positive drug users in Miami,” HIV Medicine, vol. 12, no. 2, pp. 78–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. G. A. Cook and S. J. Opella, “NMR studies of p7 protein from hepatitis C virus,” European Biophysics Journal, vol. 39, no. 7, pp. 1097–1104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. D. C. Griffin, R. Harvey, D. S. Clarke, W. S. Barclay, M. Harris, and D. J. Rowlands, “A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria,” Journal of General Virology, vol. 85, no. 2, pp. 451–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. M. J. Bouchard, L. H. Wang, and R. J. Schneider, “Calcium signaling by HBx protein in hepatitis B virus DNA replication,” Science, vol. 294, no. 5550, pp. 2376–2378, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Choi, S. G. Park, J. H. Yoo, and G. Jung, “Calcium ions affect the hepatitis B virus core assembly,” Virology, vol. 332, no. 1, pp. 454–463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Foti, L. Cartier, V. Piguet et al., “The HIV Nef protein alters Ca2+ signaling in myelomonocytic cells through SH3-mediated protein-protein interactions,” The Journal of Biological Chemistry, vol. 274, no. 49, pp. 34765–34772, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Manninen and K. Saksela, “HIV-1 Nef interacts with inositol trisphosphate receptor to activate calcium signaling in T cells,” Journal of Experimental Medicine, vol. 195, no. 8, pp. 1023–1032, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Kinoshita, L. Su, M. Amano, L. A. Timmerman, H. Kaneshima, and G. P. Nolan, “The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells,” Immunity, vol. 6, no. 3, pp. 235–244, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. M. C. Ruiz, J. Cohen, and F. Michelangeli, “Role of Ca2+ in the replication and pathogenesis of rotavirus and other viral infections,” Cell Calcium, vol. 28, no. 3, pp. 137–149, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Tian, M. K. Estes, Y. Hu, J. M. Ball, C. Q. Zeng, and W. P. Schilling, “The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum,” Journal of Virology, vol. 69, no. 9, pp. 5763–5772, 1995. View at Google Scholar · View at Scopus
  74. Y. Díaz, M. E. Chemello, F. Peña et al., “Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells,” Journal of Virology, vol. 82, no. 22, pp. 11331–11343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. L. Zambrano, Y. Díaz, F. Peña et al., “Silencing of rotavirus NSP4 or VP7 expression reduces alterations in Ca2+ homeostasis induced by infection of cultured cells,” Journal of Virology, vol. 82, no. 12, pp. 5815–5824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. M. C. Ruiz, O. C. Aristimuño, Y. Díaz et al., “Intracellular disassembly of infectious rotavirus particles by depletion of Ca2+ sequestered in the endoplasmic reticulum at the end of virus cycle,” Virus Research, vol. 130, no. 1-2, pp. 140–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Irurzun, J. Arroyo, A. Alvarez, and L. Carrasco, “Enhanced intracellular calcium concentration during poliovirus infection,” Journal of Virology, vol. 69, no. 8, pp. 5142–5146, 1995. View at Google Scholar · View at Scopus
  78. R. Aldabe, A. Irurzun, and L. Carrasco, “Poliovirus protein 2BC increases cytosolic free calcium concentrations,” Journal of Virology, vol. 71, no. 8, pp. 6214–6217, 1997. View at Google Scholar · View at Scopus
  79. C. Brisac, F. Téoulé, A. Autret et al., “Calcium flux between the endoplasmic reticulum and mitochondrion contributes to poliovirus-induced apoptosis,” Journal of Virology, vol. 84, no. 23, pp. 12226–12235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. J. L. Nieva, A. Agirre, S. Nir, and L. Carrasco, “Mechanisms of membrane permeabilization by picornavirus 2B viroporin,” The FEBS Letters, vol. 552, no. 1, pp. 68–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. F. J. M. van Kuppeveld, A. S. de Jong, W. J. G. Melchers, and P. H. G. M. Willems, “Enterovirus protein 2B po(u)res out the calcium: a viral strategy to survive?” Trends in Microbiology, vol. 13, no. 2, pp. 41–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. A. S. de Jong, H. J. Visch, F. de Mattia et al., “The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi,” The Journal of Biological Chemistry, vol. 281, no. 20, pp. 14144–14150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. S. de Jong, F. de Mattia, M. M. van Dommelen et al., “Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking,” Journal of Virology, vol. 82, no. 7, pp. 3782–3790, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. F. J. M. van Kuppeveld, J. G. J. Hoenderop, R. L. L. Smeets et al., “Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release,” EMBO Journal, vol. 16, no. 12, pp. 3519–3532, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Campanella, A. S. de Jong, K. W. H. Lanke et al., “The coxsackievirus 2B protein suppresses apoptotic host cell responses by manipulating intracellular Ca2+ homeostasis,” The Journal of Biological Chemistry, vol. 279, no. 18, pp. 18440–18450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Bozidis, C. D. Williamson, D. S. Wong, and A. M. Colberg-Poley, “Trafficking of UL37 proteins into mitochondrion-associated membranes during permissive human cytomegalovirus infection,” Journal of Virology, vol. 84, no. 15, pp. 7898–7903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Sharon-Friling, J. Goodhouse, A. M. Colberg-Poley, and T. Shenk, “Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 50, pp. 19117–19122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. P. Pinton, D. Ferrari, E. Rapizzi, F. Di Virgilio, T. Pozzan, and R. Rizzuto, “The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action,” EMBO Journal, vol. 20, no. 11, pp. 2690–2701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. A. R. Moise, J. R. Grant, T. Z. Vitalis, and W. A. Jefferies, “Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release,” Journal of Virology, vol. 76, no. 4, pp. 1578–1587, 2002. View at Google Scholar · View at Scopus
  90. P. H. Chan, K. Niizuma, and H. Endo, “Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival,” Journal of Neurochemistry, vol. 109, no. 1, pp. 133–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Muller, A. R. Crofts, and D. M. Kramer, “Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex,” Biochemistry, vol. 41, no. 25, pp. 7866–7874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. F. L. Muller, A. G. Roberts, M. K. Bowman, and D. M. Kramer, “Architecture of the Q-o site of the cytochrome bc1 complex probed by superoxide production,” Biochemistry, vol. 42, no. 21, pp. 6493–6499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. F. L. Muller, Y. Liu, and H. van Remmen, “Complex III releases superoxide to both sides of the inner mitochondrial membrane,” The Journal of Biological Chemistry, vol. 279, no. 47, pp. 49064–49073, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. V. P. Skulachev, “Bioenergetic aspects of apoptosis, necrosis and mitoptosis,” Apoptosis, vol. 11, no. 4, pp. 473–485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. J. St-Pierre, J. A. Buckingham, S. J. Roebuck, and M. D. Brand, “Topology of superoxide production from different sites in the mitochondrial electron transport chain,” The Journal of Biological Chemistry, vol. 277, no. 47, pp. 44784–44790, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Han, F. Antunes, R. Canali, D. Rettori, and E. Cadenas, “Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol,” The Journal of Biological Chemistry, vol. 278, no. 8, pp. 5557–5563, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Miwa, J. St-Pierre, L. Partridge, and M. D. Brand, “Superoxide and hydrogen peroxide production by Drosophila mitochondria,” Free Radical Biology and Medicine, vol. 35, no. 8, pp. 938–948, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Tsutsui, T. Ide, and S. Kinugawa, “Mitochondrial oxidative stress, DNA damage, and heart failure,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1737–1744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. D. F. Stowe and A. K. S. Camara, “Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1373–1414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Tsutsui, S. Kinugawa, and S. Matsushima, “Mitochondrial oxidative stress and dysfunction in myocardial remodelling,” Cardiovascular Research, vol. 81, no. 3, pp. 449–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. J. M. Taylor, D. Quilty, L. Banadyga, and M. Barry, “The vaccinia virus protein F1L interacts with Bim and inhibits activation of the pro-apoptotic protein Bax,” The Journal of Biological Chemistry, vol. 281, no. 51, pp. 39728–39739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Ott, J. D. Robertson, V. Gogvadze, B. Zhivotovsky, and S. Orrenius, “Cytochrome c release from mitochondria proceeds by a two-step process,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1259–1263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Raha, A. T. Myint, L. Johnstone, and B. H. Robinson, “Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase,” Free Radical Biology and Medicine, vol. 32, no. 5, pp. 421–430, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. K. A. McGuire, A. U. Barlan, T. M. Griffin, and C. M. Wiethoff, “Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species,” Journal of Virology, vol. 85, no. 20, pp. 10806–10813, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Nishina, K. Hino, M. Korenaga et al., “Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription,” Gastroenterology, vol. 134, no. 1, pp. 226–238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. N. S. R. de Mochel, S. Seronello, S. H. Wang et al., “Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection,” Hepatology, vol. 52, no. 1, pp. 47–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. M. J. Hsieh, Y. S. Hsieh, T. Y. Chen, and H. L. Chiou, “Hepatitis C virus E2 protein induce reactive oxygen species (ROS)-related fibrogenesis in the HSC-T6 hepatic stellate cell line,” Journal of Cellular Biochemistry, vol. 112, no. 1, pp. 233–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Machida, G. Mcnamara, K. T. Cheng et al., “Hepatitis C virus inhibits DNA damage repair through reactive oxygen and nitrogen species and by interfering with the ATM-NBS1/Mre11/Rad50 DNA repair pathway in monocytes and hepatocytes,” Journal of Immunology, vol. 185, no. 11, pp. 6985–6998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. I. I. Kruman, A. Nath, and M. P. Mattson, “HIV-1 protein tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress,” Experimental Neurology, vol. 154, no. 2, pp. 276–288, 1998. View at Publisher · View at Google Scholar · View at Scopus
  110. M. A. Baugh, “HIV: reactive oxygen species, enveloped viruses and hyperbaric oxygen,” Medical Hypotheses, vol. 55, no. 3, pp. 232–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. L. Gil, A. Tarinas, D. Hernandez et al., “Altered oxidative stress indexes related to disease progression marker in human immunodeficiency virus infected patients with antiretroviral therapy,” Biomedicine and Aging Pathology, vol. 1, no. 1, pp. 8–15, 2011. View at Publisher · View at Google Scholar
  112. C. W. Pyo, Y. L. Yang, N. K. Yoo, and S. Y. Choi, “Reactive oxygen species activate HIV long terminal repeat via post-translational control of NF-κB,” Biochemical and Biophysical Research Communications, vol. 376, no. 1, pp. 180–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. W. Lin, G. Wu, S. Li et al., “HIV and HCV cooperatively promote hepatic fibrogenesis via induction of reactive oxygen species and NF κB,” The Journal of Biological Chemistry, vol. 286, no. 4, pp. 2665–2674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Lassoued, B. Gargouri, A. E. F. El Feki, H. Attia, and J. van Pelt, “Transcription of the epstein-barr virus lytic cycle activator BZLF-1 during oxidative stress induction,” Biological Trace Element Research, vol. 137, no. 1, pp. 13–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Lassoued, R. B. Ameur, W. Ayadi, B. Gargouri, R. B. Mansour, and H. Attia, “Epstein-Barr virus induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines,” Molecular and Cellular Biochemistry, vol. 313, no. 1-2, pp. 179–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. B. Gargouri, J. van Pelt, A. E. F. El Feki, H. Attia, and S. Lassoued, “Induction of Epstein-Barr virus (EBV) lytic cycle in vitro causes oxidative stress in lymphoblastoid B cell lines,” Molecular and Cellular Biochemistry, vol. 324, no. 1-2, pp. 55–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. Y. J. Kim, J. K. Jung, S. Y. Lee, and K. L. Jang, “Hepatitis B virus X protein overcomes stress-induced premature senescence by repressing p16INK4a expression via DNA methylation,” Cancer Letters, vol. 288, no. 2, pp. 226–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. L. Hu, L. Chen, G. Yang et al., “HBx sensitizes cells to oxidative stress-induced apoptosis by accelerating the loss of Mcl-1 protein via caspase-3 cascade,” Molecular Cancer, vol. 10, article 43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Schaedler, J. Krause, K. Himmelsbach et al., “Hepatitis B virus induces expression of antioxidant response element-regulated genes by activation of Nrf2,” The Journal of Biological Chemistry, vol. 285, no. 52, pp. 41074–41086, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Srisuttee, S. S. Koh, E. H. Park et al., “Up-regulation of Foxo4 mediated by hepatitis B virus X protein confers resistance to oxidative stress-induced cell death,” International Journal of Molecular Medicine, vol. 28, no. 2, pp. 255–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Bhargava, S. Khan, H. Panwar et al., “Occult hepatitis B virus infection with low viremia induces DNA damage, apoptosis and oxidative stress in peripheral blood lymphocytes,” Virus Research, vol. 153, no. 1, pp. 143–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. Y. Ano, A. Sakudo, T. Kimata, R. Uraki, K. Sugiura, and T. Onodera, “Oxidative damage to neurons caused by the induction of microglial NADPH oxidase in encephalomyocarditis virus infection,” Neuroscience Letters, vol. 469, no. 1, pp. 39–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Colombini, E. Blachly-Dyson, and M. Forte, “VDAC, a channel in the outer mitochondrial membrane,” Ion channels, vol. 4, pp. 169–202, 1996. View at Google Scholar · View at Scopus
  124. M. Forte, E. Blachly-Dyson, and M. Colombini, “Structure and function of the yeast outer mitochondrial membrane channel, VDAC,” Society of General Physiologists Series, vol. 51, pp. 145–154, 1996. View at Google Scholar · View at Scopus
  125. S. Villinger, R. Briones, K. Giller et al., “Functional dynamics in the voltage-dependent anion channel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 52, pp. 22546–22551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. E. Pebay-Peyroula, C. Dahout-Gonzalez, R. Kahn, V. Trézéguet, G. J. Lauquin, and G. Brandolin, “Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside,” Nature, vol. 426, no. 6962, pp. 39–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. The protective mechanisms,” Archives of Biochemistry and Biophysics, vol. 195, no. 2, pp. 453–459, 1979. View at Google Scholar · View at Scopus
  128. K. D. Garlid, X. Sun, P. Paucek, and G. Woldegiorgis, “Mitochondrial cation transport systems,” Methods in Enzymology, vol. 260, pp. 331–348, 1995. View at Publisher · View at Google Scholar · View at Scopus
  129. P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiological Reviews, vol. 79, no. 4, pp. 1127–1155, 1999. View at Google Scholar · View at Scopus
  130. A. P. Halestrap, “Calcium, mitochondria and reperfusion injury: a pore way to die,” Biochemical Society Transactions, vol. 34, no. 2, pp. 232–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. K. Szydlowska and M. Tymianski, “Calcium, ischemia and excitotoxicity,” Cell Calcium, vol. 47, no. 2, pp. 122–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Piccoli, R. Scrima, G. Quarato et al., “Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress,” Hepatology, vol. 46, no. 1, pp. 58–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Gac, J. Bigda, and T. W. Vahlenkamp, “Increased mitochondrial superoxide dismutase expression and lowered production of reactive oxygen species during rotavirus infection,” Virology, vol. 404, no. 2, pp. 293–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Carrère-Kremer, C. Montpellier-Pala, L. Cocquerel, C. Wychowski, F. Penin, and J. Dubuisson, “Subcellular localization and topology of the p7 polypeptide of hepatitis C virus,” Journal of Virology, vol. 76, no. 8, pp. 3720–3730, 2002. View at Publisher · View at Google Scholar · View at Scopus
  135. M. E. Gonzalez and L. Carrasco, “Viroporins,” The FEBS Letters, vol. 552, no. 1, pp. 28–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. D. Pavlovic, D. C. A. Neville, O. Argaud et al., “The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6104–6108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Azuma, A. Matsuo, T. Suzuki, T. Kurosawa, X. Zhang, and Y. Aida, “Human immunodeficiency virus type 1 Vpr induces cell cycle arrest at the G1 phase and apoptosis via disruption of mitochondrial function in rodent cells,” Microbes and Infection, vol. 8, no. 3, pp. 670–679, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. E. Jacotot, L. Ravagnan, M. Loeffler et al., “The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore,” Journal of Experimental Medicine, vol. 191, no. 1, pp. 33–46, 2000. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Deniaud, C. Brenner, and G. Kroemer, “Mitochondrial membrane permeabilization by HIV-1 Vpr,” Mitochondrion, vol. 4, no. 2-3, pp. 223–233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Macho, M. A. Calzado, L. Jiménez-Reina, E. Ceballos, J. León, and E. Muñoz, “Susceptibility of HIV-1-TAT transfected cells to undergo apoptosis. Biochemical mechanisms,” Oncogene, vol. 18, no. 52, pp. 7543–7551, 1999. View at Google Scholar · View at Scopus
  141. H. Everett, M. Barry, X. Sun et al., “The myxoma poxvirus protein, M11L, prevents apoptosis by direct interaction with the mitochondrial permeability transition pore,” Journal of Experimental Medicine, vol. 196, no. 9, pp. 1127–1139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  142. H. Everett, M. Barry, S. F. Lee et al., “M11L: a novel mitochondria-localized protein of myxoma virus that blocks apoptosis of infected leukocytes,” Journal of Experimental Medicine, vol. 191, no. 9, pp. 1487–1498, 2000. View at Publisher · View at Google Scholar · View at Scopus
  143. J. L. Macen, K. A. Graham, S. F. Lee, M. Schreiber, L. K. Boshkov, and G. McFadden, “Expression of the myxoma virus tumor necrosis factor receptor homologue and M11L genes is required to prevent virus-induced apoptosis in infected rabbit T lymphocytes,” Virology, vol. 218, no. 1, pp. 232–237, 1996. View at Publisher · View at Google Scholar · View at Scopus
  144. S. T. Wasilenko, T. L. Stewart, A. F. A. Meyers, and M. Barry, “Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14345–14350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. S. T. Wasilenko, L. Banadyga, D. Bond, and M. Barry, “The vaccinia virus F1L protein interacts with the proapoptotic protein Bak and inhibits Bak activation,” Journal of Virology, vol. 79, no. 22, pp. 14031–14043, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. S. T. Wasilenko, A. F. A. Meyers, K. V. Helm, and M. Barry, “Vaccinia virus infection disarms the mitochondrion-mediated pathway of the apoptotic cascade by modulating the permeability transition pore,” Journal of Virology, vol. 75, no. 23, pp. 11437–11448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  147. K. Bruns, N. Studtrucker, A. Sharma et al., “Structural characterization and oligomerization of PB1-F2, a proapoptotic influenza A virus protein,” The Journal of Biological Chemistry, vol. 282, no. 1, pp. 353–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. W. Chen, P. A. Calvo, D. Malide et al., “A novel influenza A virus mitochondrial protein that induces cell death,” Nature Medicine, vol. 7, no. 12, pp. 1306–1312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  149. J. S. Gibbs, D. Malide, F. Hornung, J. R. Bennink, and J. W. Yewdell, “The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function,” Journal of Virology, vol. 77, no. 13, pp. 7214–7224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. M. Henkel, D. Mitzner, P. Henklein et al., “Proapoptotic influenza A virus protein PB1-F2 forms a nonselective ion channel,” PLoS ONE, vol. 5, no. 6, Article ID e11112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Danishuddin, S. N. Khan, and A. U. Khan, “Molecular interactions between mitochondrial membrane proteins and the C-terminal domain of PB1-F2: an in silico approach,” Journal of Molecular Modeling, vol. 16, no. 3, pp. 535–541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Silic-Benussi, O. Marin, R. Biasiotto, D. M. D'Agostino, and V. Ciminale, “Effects of human T-cell leukemia virus type 1 (HTLV-1) p13 on mitochondrial K+ permeability: a new member of the viroporin family?” The FEBS Letters, vol. 584, no. 10, pp. 2070–2075, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. V. Ciminale, L. Zotti, D. M. D'Agostino et al., “Mitochondrial targeting of the p13(II) protein coded by the x-II ORF of human T-cell leukemia/lymphotropic virus type I (HTLV-I),” Oncogene, vol. 18, no. 31, pp. 4505–4514, 1999. View at Publisher · View at Google Scholar · View at Scopus
  154. R. Biasiotto, P. Aguiari, R. Rizzuto, P. Pinton, D. M. D'Agostino, and V. Ciminale, “The p13 protein of human T cell leukemia virus type 1 (HTLV-1) modulates mitochondrial membrane potential and calcium uptake,” Biochimica et Biophysica Acta, vol. 1797, no. 6-7, pp. 945–951, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. M. Silic-Benussi, I. Cavallari, T. Zorzan et al., “Suppression of tumor growth and cell proliferation by p13II, a mitochondrial protein of human T cell leukemia virus type 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6629–6634, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. W. A. Nudson, J. Rovnak, M. Buechner, and S. L. Quackenbush, “Walleye dermal sarcoma virus Orf C is targeted to the mitochondria,” Journal of General Virology, vol. 84, no. 2, pp. 375–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  157. E. White, “Mechanisms of apoptosis regulation by viral oncogenes in infection and tumorigenesis,” Cell Death and Differentiation, vol. 13, no. 8, pp. 1371–1377, 2006. View at Publisher · View at Google Scholar · View at Scopus
  158. L. Galluzzi, C. Brenner, E. Morselli, Z. Touat, and G. Kroemer, “Viral control of mitochondrial apoptosis,” PLoS Pathogens, vol. 4, no. 5, Article ID e1000018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. C. A. Benedict, P. S. Norris, and C. F. Ware, “To kill or be killed: viral evasion of apoptosis,” Nature Immunology, vol. 3, no. 11, pp. 1013–1018, 2002. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Hay and G. Kannourakis, “A time to kill: viral manipulation of the cell death program,” Journal of General Virology, vol. 83, no. 7, pp. 1547–1564, 2002. View at Google Scholar · View at Scopus
  161. J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” The British Journal of Cancer, vol. 26, no. 4, pp. 239–257, 1972. View at Google Scholar · View at Scopus
  162. E. Gulbins, S. Dreschers, and J. Bock, “Role of mitochondria in apoptosis,” Experimental Physiology, vol. 88, no. 1, pp. 85–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  163. V. Borutaite, “Mitochondria as decision-makers in cell death,” Environmental and Molecular Mutagenesis, vol. 51, no. 5, pp. 406–416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. C. M. Sanfilippo and J. A. Blaho, “The facts of death,” International Reviews of Immunology, vol. 22, no. 5-6, pp. 327–340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  165. X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, “Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,” Cell, vol. 86, no. 1, pp. 147–157, 1996. View at Publisher · View at Google Scholar · View at Scopus
  166. C. Castanier and D. Arnoult, “Mitochondrial dynamics during apoptosis,” Medecine/Sciences, vol. 26, no. 10, pp. 830–835, 2010. View at Google Scholar · View at Scopus
  167. H. Zou, W. J. Henzel, X. Liu, A. Lutschg, and X. Wang, “Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3,” Cell, vol. 90, no. 3, pp. 405–413, 1997. View at Publisher · View at Google Scholar · View at Scopus
  168. M. Karbowski, “Mitochondria on guard: role of mitochondrial fusion and fission in the regulation of apoptosis,” Advances in Experimental Medicine and Biology, vol. 687, pp. 131–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. X. M. Sun, M. MacFarlane, J. Zhuang, B. B. Wolf, D. R. Green, and G. M. Cohen, “Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis,” The Journal of Biological Chemistry, vol. 274, no. 8, pp. 5053–5060, 1999. View at Publisher · View at Google Scholar · View at Scopus
  170. A. Ashkenazi and V. M. Dixit, “Death receptors: signaling and modulation,” Science, vol. 281, no. 5381, pp. 1305–1308, 1998. View at Google Scholar · View at Scopus
  171. K. F. Ferri and G. Kroemer, “Organelle-specific initiation of cell death pathways,” Nature Cell Biology, vol. 3, no. 11, pp. E255–E263, 2001. View at Publisher · View at Google Scholar · View at Scopus
  172. L. Ravagnan, T. Roumier, and G. Kroemer, “Mitochondria, the killer organelles and their weapons,” Journal of Cellular Physiology, vol. 192, no. 2, pp. 131–137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  173. S. Ohta, “A multi-functional organelle mitochondrion is involved in cell death, proliferation and disease,” Current Medicinal Chemistry, vol. 10, no. 23, pp. 2485–2494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  174. N. N. Danial, A. Gimenez-Cassina, and D. Tondera, “Homeostatic functions of BCL-2 proteins beyond apoptosis,” Advances in Experimental Medicine and Biology, vol. 687, pp. 1–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. M. E. Soriano and L. Scorrano, “The interplay between BCL-2 family proteins and mitochondrial morphology in the regulation of apoptosis,” Advances in Experimental Medicine and Biology, vol. 687, pp. 97–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. S. Krishna, I. C. C. Low, and S. Pervaiz, “Regulation of mitochondrial metabolism: yet another facet in the biology of the oncoprotein Bcl-2,” Biochemical Journal, vol. 435, no. 3, pp. 545–551, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. F. Llambi and D. R. Green, “Apoptosis and oncogenesis: give and take in the BCL-2 family,” Current Opinion in Genetics and Development, vol. 21, no. 1, pp. 12–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. L. Scorrano and S. J. Korsmeyer, “Mechanisms of cytochrome c release by proapoptotic BCL-2 family members,” Biochemical and Biophysical Research Communications, vol. 304, no. 3, pp. 437–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  179. M. Crompton, “Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis,” Current Opinion in Cell Biology, vol. 12, no. 4, pp. 414–419, 2000. View at Publisher · View at Google Scholar · View at Scopus
  180. N. J. Waterhouse, J. E. Ricci, and D. R. Green, “And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis,” Biochimie, vol. 84, no. 2-3, pp. 113–121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  181. A. S. Belzacq, H. L. A. Vieira, F. Verrier et al., “Bcl-2 and Bax modulate adenine nucleotide translocase activity,” Cancer Research, vol. 63, no. 2, pp. 541–546, 2003. View at Google Scholar · View at Scopus
  182. N. Zamzami and G. Kroemer, “Apoptosis: mitochondrial membrane permeabilization—the (w)hole story?” Current Biology, vol. 13, no. 2, pp. R71–R73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  183. G. Paradies, G. Petrosillo, V. Paradies, and F. M. Ruggiero, “Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease,” Cell Calcium, vol. 45, no. 6, pp. 643–650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  184. A. Cuconati and E. White, “Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection,” Genes and Development, vol. 16, no. 19, pp. 2465–2478, 2002. View at Publisher · View at Google Scholar · View at Scopus
  185. B. J. Thomson, “Viruses and apoptosis,” International Journal of Experimental Pathology, vol. 82, no. 2, pp. 65–76, 2001. View at Publisher · View at Google Scholar
  186. D. Perez and E. White, “TNF-α signals apoptosis through a bid-dependent conformational change in Bax that is inhibited by E1B 19K,” Molecular Cell, vol. 6, no. 1, pp. 53–63, 2000. View at Google Scholar · View at Scopus
  187. B. M. Pützer, T. Stiewe, K. Parssanedjad, S. Rega, and H. Esche, “E1A is sufficient by itself to induce apoptosis independent of p53 and other adenoviral gene products,” Cell Death and Differentiation, vol. 7, no. 2, pp. 177–188, 2000. View at Google Scholar · View at Scopus
  188. L. Banadyga, J. Gerig, T. Stewart, and M. Barry, “Fowlpox virus encodes a Bcl-2 homologue that protects cells from apoptotic death through interaction with the proapoptotic protein bak,” Journal of Virology, vol. 81, no. 20, pp. 11032–11045, 2007. View at Publisher · View at Google Scholar · View at Scopus
  189. A. Brun, C. Rivas, M. Esteban, J. M. Escribano, and C. Alonso, “African swine fever virus gene A179L, a viral homologue of bcl-2, protects cells from programmed cell death,” Virology, vol. 225, no. 1, pp. 227–230, 1996. View at Publisher · View at Google Scholar · View at Scopus
  190. Y. Revilla, A. Cebrián, E. Baixerás, C. Martínez, E. Viñuela, and M. L. Salas, “Inhibition of apoptosis by the African swine fever virus Bcl-2 homologue: role of the BH1 domain,” Virology, vol. 228, no. 2, pp. 400–404, 1997. View at Publisher · View at Google Scholar · View at Scopus
  191. T. Derfuss, H. Fickenscher, M. S. Kraft et al., “Antiapoptotic activity of the herpesvirus saimiri-encoded Bcl-2 homolog: stabilization of mitochondria and inhibition of caspase-3-like activity,” Journal of Virology, vol. 72, no. 7, pp. 5897–5904, 1998. View at Google Scholar · View at Scopus
  192. W. L. Marshall, C. Yim, E. Gustafson et al., “Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak,” Journal of Virology, vol. 73, no. 6, pp. 5181–5185, 1999. View at Google Scholar · View at Scopus
  193. X. M. Yin, Z. N. Oltvai, and S. J. Korsmeyer, “BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax,” Nature, vol. 369, no. 6478, pp. 321–323, 1994. View at Publisher · View at Google Scholar · View at Scopus
  194. Z. Rahmani, K. W. Huh, R. Lasher, and A. Siddiqui, “Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential,” Journal of Virology, vol. 74, no. 6, pp. 2840–2846, 2000. View at Publisher · View at Google Scholar · View at Scopus
  195. Y. W. Lu and W. N. Chen, “Human hepatitis B virus X protein induces apoptosis in HepG2 cells: role of BH3 domain,” Biochemical and Biophysical Research Communications, vol. 338, no. 3, pp. 1551–1556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  196. Y. Tanaka, F. Kanai, T. Kawakami et al., “Interaction of the hepatitis B virus X protein (HBx) with heat shock protein 60 enhances HBx-mediated apoptosis,” Biochemical and Biophysical Research Communications, vol. 318, no. 2, pp. 461–469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  197. J. Diao, A. A. Khine, F. Sarangi et al., “X protein of hepatitis B virus inhibits Fas-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway,” The Journal of Biological Chemistry, vol. 276, no. 11, pp. 8328–8340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  198. A. S. Kekule, U. Lauer, L. Weiss, B. Luber, and P. H. Hofschneider, “Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway,” Nature, vol. 361, no. 6414, pp. 742–745, 1993. View at Publisher · View at Google Scholar · View at Scopus
  199. F. Su and R. J. Schneider, “Hepatitis B virus HBx protein activates transcription factor NF-κB by acting on multiple cytoplasmic inhibitors of rel-related proteins,” Journal of Virology, vol. 70, no. 7, pp. 4558–4566, 1996. View at Google Scholar · View at Scopus
  200. J. Benn, F. Su, M. Doria, and R. J. Schneider, “Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases,” Journal of Virology, vol. 70, no. 8, pp. 4978–4985, 1996. View at Google Scholar · View at Scopus
  201. F. Henkler, A. R. Lopes, M. Jones, and R. Koshy, “Erk-independent partial activation of AP-1 sites by the hepatitis B virus HBx protein,” Journal of General Virology, vol. 79, no. 11, pp. 2737–2742, 1998. View at Google Scholar · View at Scopus
  202. W. L. Shih, M. L. Kuo, S. E. Chuang, A. L. Cheng, and S. L. Doong, “Hepatitis b virus x protein inhibits transforming growth factor-β-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway,” The Journal of Biological Chemistry, vol. 275, no. 33, pp. 25858–25864, 2000. View at Publisher · View at Google Scholar · View at Scopus
  203. J. Komano, M. Sugiura, and K. Takada, “Epstein-barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt's lymphoma cell line Akata,” Journal of Virology, vol. 72, no. 11, pp. 9150–9156, 1998. View at Google Scholar · View at Scopus
  204. D. S. Bellows, M. Howell, C. Pearson, S. A. Hazlewood, and J. M. Hardwick, “Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins,” Journal of Virology, vol. 76, no. 5, pp. 2469–2479, 2002. View at Publisher · View at Google Scholar · View at Scopus
  205. A. M. Flanagan and A. Letai, “BH3 domains define selective inhibitory interactions with BHRF-1 and KSHV BCL-2,” Cell Death and Differentiation, vol. 15, no. 3, pp. 580–588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  206. M. Thomas and L. Banks, “Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types,” Journal of General Virology, vol. 80, no. 6, pp. 1513–1517, 1999. View at Google Scholar · View at Scopus
  207. S. Jackson, C. Harwood, M. Thomas, L. Banks, and A. Storey, “Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins,” Genes and Development, vol. 14, no. 23, pp. 3065–3073, 2000. View at Publisher · View at Google Scholar · View at Scopus
  208. S. Leverrier, D. Bergamaschi, L. Ghali et al., “Role of HPV E6 proteins in preventing UVB-induced release of pro-apoptotic factors from the mitochondria,” Apoptosis, vol. 12, no. 3, pp. 549–560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  209. Z. M. Sun, Y. Xiao, L. L. Ren, X. B. Lei, and J. W. Wang, “Enterovirus 71 induces apoptosis in a Bax dependent manner,” Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, vol. 25, no. 1, pp. 49–52, 2011. View at Google Scholar · View at Scopus
  210. C. S. Ilkow, I. S. Goping, and T. C. Hobman, “The rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax,” PLoS Pathogens, vol. 7, no. 2, Article ID e1001291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  211. V. S. Goldmacher, L. M. Bartle, A. Skaletskaya et al., “A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12536–12541, 1999. View at Publisher · View at Google Scholar · View at Scopus
  212. D. Arnoult, L. M. Bartle, A. Skaletskaya et al., “Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 21, pp. 7988–7993, 2004. View at Publisher · View at Google Scholar · View at Scopus
  213. D. Poncet, N. Larochette, A. Pauleau et al., “An anti-apoptotic viral protein that recruits Bax to mitochondria,” The Journal of Biological Chemistry, vol. 279, no. 21, pp. 22605–22614, 2004. View at Publisher · View at Google Scholar · View at Scopus
  214. H. L. A. Vieira, A. S. Belzacq, D. Haouzi et al., “The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal,” Oncogene, vol. 20, no. 32, pp. 4305–4316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  215. P. Boya, M. C. Morales, R. Gonzalez-Polo et al., “The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family,” Oncogene, vol. 22, no. 40, pp. 6220–6230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  216. A. L. McCormick, V. L. Smith, D. Chow, and E. S. Mocarski, “Disruption of mitochondrial networks by the human cytomegalovirus UL37 gene product viral mitochondrion-localized inhibitor of apoptosis,” Journal of Virology, vol. 77, no. 1, pp. 631–641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  217. M. G. Katze, Y. He, and M. Gale Jr., “Viruses and interferon: a fight for supremacy,” Nature Reviews Immunology, vol. 2, no. 9, pp. 675–687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  218. M. Yoneyama, M. Kikuchi, T. Natsukawa et al., “The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses,” Nature Immunology, vol. 5, no. 7, pp. 730–737, 2004. View at Publisher · View at Google Scholar · View at Scopus
  219. J. Andrejeva, K. S. Childs, D. F. Young et al., “The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17264–17269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  220. T. Maniatis, J. V. Falvo, T. H. Kim et al., “Structure and function of the interferon-β enhanceosome,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 63, pp. 609–620, 1998. View at Google Scholar · View at Scopus
  221. I. Scott, “The role of mitochondria in the mammalian antiviral defense system,” Mitochondrion, vol. 10, no. 4, pp. 316–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  222. C. Castanier and D. Arnoult, “Mitochondrial localization of viral proteins as a means to subvert host defense,” Biochimica et Biophysica Acta, vol. 1813, no. 4, pp. 575–583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  223. C. Wang, X. Liu, and B. Wei, “Mitochondrion: an emerging platform critical for host antiviral signaling,” Expert Opinion on Therapeutic Targets, vol. 15, no. 5, pp. 647–665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  224. R. B. Seth, L. Sun, and Z. J. Chen, “Antiviral innate immunity pathways,” Cell Research, vol. 16, no. 2, pp. 141–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  225. L. G. Xu, Y. Y. Wang, K. J. Han, L. Y. Li, Z. Zhai, and H. B. Shu, “VISA is an adapter protein required for virus-triggered IFN-β signaling,” Molecular Cell, vol. 19, no. 6, pp. 727–740, 2005. View at Publisher · View at Google Scholar · View at Scopus
  226. T. Kawai, K. Takahashi, S. Sato et al., “IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction,” Nature Immunology, vol. 6, no. 10, pp. 981–988, 2005. View at Publisher · View at Google Scholar · View at Scopus
  227. E. Meylan, J. Curran, K. Hofmann et al., “Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus,” Nature, vol. 437, no. 7062, pp. 1167–1172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  228. Y. Xu, H. Zhong, and W. Shi, “MAVS protects cells from apoptosis by negatively regulating VDAC1,” Molecular and Cellular Biochemistry, vol. 375, no. 1-2, p. 219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  229. X. D. Li, L. Sun, R. B. Seth, G. Pineda, and Z. J. Chen, “Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 49, pp. 17717–17722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  230. E. Foy, K. Li, C. Wang et al., “Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease,” Science, vol. 300, no. 5622, pp. 1145–1148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  231. A. Breiman, N. Grandvaux, R. Lin et al., “Inhibition of RIG-I-dependent signaling to the interferon pathway during hepatitis C virus expression and restoration of signaling by IKKε,” Journal of Virology, vol. 79, no. 7, pp. 3969–3978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  232. E. Foy, K. Li, R. Sumpter Jr. et al., “Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2986–2991, 2005. View at Publisher · View at Google Scholar · View at Scopus
  233. B. Beames, D. Chavez, and R. E. Lanford, “GB virus B as a model for hepatitis C virus,” ILAR Journal, vol. 42, no. 2, pp. 152–160, 2001. View at Google Scholar · View at Scopus
  234. Z. Chen, Y. Benureau, R. Rijnbrand et al., “GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS,” Journal of Virology, vol. 81, no. 2, pp. 964–976, 2007. View at Publisher · View at Google Scholar · View at Scopus
  235. T. Öhman, J. Rintahaka, N. Kalkkinen, S. Matikainen, and T. A. Nyman, “Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza a virus infection of human primary macrophages,” Journal of Immunology, vol. 182, no. 9, pp. 5682–5692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  236. D. A. Matthews and W. C. Russell, “Adenovirus core protein V interacts with p32—a protein which is associated with both the mitochondria and the nucleus,” Journal of General Virology, vol. 79, no. 7, pp. 1677–1685, 1998. View at Google Scholar · View at Scopus
  237. S. Cen, A. Khorchid, H. Javanbakht et al., “Incorporation of lysyl-tRNA synthetase into human immunodeficiency virus type 1,” Journal of Virology, vol. 75, no. 11, pp. 5043–5048, 2001. View at Publisher · View at Google Scholar · View at Scopus
  238. E. Tolkunova, H. Park, J. Xia, M. P. King, and E. Davidson, “The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual: alternative splicing of the primary transcript,” The Journal of Biological Chemistry, vol. 275, no. 45, pp. 35063–35069, 2000. View at Publisher · View at Google Scholar · View at Scopus
  239. M. Kaminska, V. Shalak, M. Francin, and M. Mirande, “Viral hijacking of mitochondrial lysyl-tRNA synthetase,” Journal of Virology, vol. 81, no. 1, pp. 68–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  240. L. A. Stark and R. T. Hay, “Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) interacts with Lys-tRNA synthetase: implications for priming of HIV-1 reverse transcription,” Journal of Virology, vol. 72, no. 4, pp. 3037–3044, 1998. View at Google Scholar · View at Scopus
  241. L. Q. Qiu, P. Cresswell, and K. C. Chin, “Viperin is required for optimal Th2 responses and T-cell receptor-mediated activation of NF-κB and AP-1,” Blood, vol. 113, no. 15, pp. 3520–3529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  242. X. Wang, E. R. Hinson, and P. Cresswell, “The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts,” Cell Host and Microbe, vol. 2, no. 2, pp. 96–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  243. J. Y. Seo, R. Yaneva, E. R. Hinson, and P. Cresswell, “Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity,” Science, vol. 332, no. 6033, pp. 1093–1097, 2011. View at Publisher · View at Google Scholar · View at Scopus
  244. S. Kim, H. Y. Kim, S. Lee et al., “Hepatitis B virus X protein induces perinuclear mitochondrial clustering in microtubule- and dynein-dependent manners,” Journal of Virology, vol. 81, no. 4, pp. 1714–1726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  245. Y. Nomura-Takigawa, M. Nagano-Fujii, L. Deng et al., “Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis,” Journal of General Virology, vol. 87, no. 7, pp. 1935–1945, 2006. View at Publisher · View at Google Scholar · View at Scopus
  246. J. S. Radovanović, V. Todorović, I. Boričić, M. Janković-Hladni, and A. Korać, “Comparative ultrastructural studies on mitochondrial pathology in the liver of AIDS patients: clusters of mitochondria, protuberances, “minimitochondria,” vacuoles, and virus-like particles,” Ultrastructural Pathology, vol. 23, no. 1, pp. 19–24, 1999. View at Google Scholar · View at Scopus
  247. G. Rojo, M. Chamorro, M. L. Salas, E. Vinuela, J. M. Cuezva, and J. Salas, “Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells,” Journal of Virology, vol. 72, no. 9, pp. 7583–7588, 1998. View at Google Scholar · View at Scopus
  248. D. C. Kelly, “Frog virus 3 replication: electron microscope observations on the sequence of infection in chick embryo fibroblasts,” Journal of General Virology, vol. 26, no. 1, pp. 71–86, 1975. View at Google Scholar · View at Scopus
  249. R. S. Fujinami and M. B. A. Oldstone, “Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity,” Science, vol. 230, no. 4729, pp. 1043–1045, 1985. View at Google Scholar · View at Scopus
  250. A. P. Kohm, K. G. Fuller, and S. D. Miller, “Mimicking the way to autoimmunity: an evolving theory of sequence and structural homology,” Trends in Microbiology, vol. 11, no. 3, pp. 101–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  251. M. Monné, A. J. Robinson, C. Boes, M. E. Harbour, I. M. Fearnley, and E. R. S. Kunji, “The mimivirus genome encodes a mitochondrial carrier that transports dATP and dTTP,” Journal of Virology, vol. 81, no. 7, pp. 3181–3186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  252. H. A. Saffran, J. M. Pare, J. A. Corcoran, S. K. Weller, and J. R. Smiley, “Herpes simplex virus eliminates host mitochondrial DNA,” EMBO Reports, vol. 8, no. 2, pp. 188–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  253. J. A. Corcoran, H. A. Saffran, B. A. Duguay, and J. R. Smiley, “Herpes simplex virus UL12.5 targets mitochondria through a mitochondrial localization sequence proximal to the N terminus,” Journal of Virology, vol. 83, no. 6, pp. 2601–2610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  254. A. Wiedmer, P. Wang, J. Zhou et al., “Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication,” Journal of Virology, vol. 82, no. 9, pp. 4647–4655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  255. K. Machida, K. T. Cheng, C. K. Lai, K. S. Jeng, V. M. Sung, and M. M. C. Lai, “Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STATS activation,” Journal of Virology, vol. 80, no. 14, pp. 7199–7207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  256. C. de Mendoza, L. Martin-Carbonero, P. Barreiro et al., “Mitochondrial DNA depletion in HIV-infected patients with chronic hepatitis C and effect of pegylated interferon plus ribavirin therapy,” AIDS, vol. 21, no. 5, pp. 583–588, 2007. View at Publisher · View at Google Scholar · View at Scopus