Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2014 (2014), Article ID 859090, 6 pages
http://dx.doi.org/10.1155/2014/859090
Review Article

Influenza Virus Aerosols in the Air and Their Infectiousness

Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia

Received 21 May 2014; Revised 11 July 2014; Accepted 25 July 2014; Published 13 August 2014

Academic Editor: Stefan Pöhlmann

Copyright © 2014 Nikolai Nikitin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Vega, J. E. Lozano, T. Meerhoff et al., “Influenza surveillance in Europe: establishing epidemic thresholds by the Moving Epidemic Method,” Influenza and other Respiratory Viruses, vol. 7, no. 4, pp. 546–558, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Cao, F. M. Blachere, W. G. Lindsley, J. D. Noti, and D. H. Beezhold, “Development of a methodology to detect viable airborne virus using personal aerosol samplers,” EPA/600/R-10/127, Environmental Protection Agency, Washington, DC, USA, 2010. View at Google Scholar
  3. I. Marois, A. Cloutier, É. Garneau, and M. V. Richter, “Initial infectious dose dictates the innate, adaptive, and memory responses to influenza in the respiratory tract,” Journal of Leukocyte Biology, vol. 92, no. 1, pp. 107–121, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J. McDevitt, S. Rudnick, M. First, and J. Spengler, “Role of absolute humidity in the inactivation of influenza viruses on stainless steel surfaces at elevated temperatures,” Applied and Environmental Microbiology, vol. 76, no. 12, pp. 3943–3947, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. B. Hall, “The spread of influenza and other respiratory viruses: complexities and conjectures,” Clinical Infectious Diseases, vol. 45, no. 3, pp. 353–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Tellier, “Aerosol transmission of influenza A virus: a review of new studies,” Journal of the Royal Society Interface, vol. 6, supplement 6, pp. S783–S790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. H. Alford, J. A. Kasel, P. J. Gerone, and V. Knight, “Human influenza resulting from aerosol inhalation.,” Proceedings of the Society for Experimental Biology and Medicine, vol. 122, no. 3, pp. 800–804, 1966. View at Google Scholar · View at Scopus
  8. M. P. Atkinson and L. M. Wein, “Quantifying the routes of transmission for pandemic influenza,” Bulletin of Mathematical Biology, vol. 70, no. 3, pp. 820–867, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  9. P. Fabian, J. J. McDevitt, W. H. DeHaan et al., “Influenza virus in human exhaled breath: an observational study,” PLoS ONE, vol. 3, no. 7, Article ID e2691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Yang, S. Elankumaran, and L. C. Marr, “Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes,” Journal of the Royal Society Interface, vol. 8, no. 61, pp. 1176–1184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. L. Ward, M. H. Dempsey, C. J. A. Ring et al., “Design and performance testing of quantitative real time PCR assays for influenza A and B viral load measurement,” Journal of Clinical Virology, vol. 29, no. 3, pp. 179–188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. J. R. Van Elden, M. Nijhuis, P. Schipper, R. Schuurman, and A. M. van Loon, “Simultaneous detection of influenza viruses A and B using real-time quantitative PCR,” Journal of Clinical Microbiology, vol. 39, no. 1, pp. 196–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. W. G. Lindsley, F. M. Blachere, K. A. Davis et al., “Distribution of airborne influenza virus and respiratory syncytial virus in an urgent care medical clinic,” Clinical Infectious Diseases, vol. 50, no. 5, pp. 693–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. W. G. Lindsley, F. M. Blachere, R. E. Thewlis et al., “Measurements of airborne influenza virus in aerosol particles from human coughs,” PLoS ONE, vol. 5, no. 11, Article ID e15100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. W. Moon, E. H. Huh, and H. C. Jeong, “Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea,” Environmental Monitoring and Assessment, vol. 186, no. 4, pp. 2111–2120, 2014. View at Publisher · View at Google Scholar
  16. B. Schweiger, I. Zadow, R. Heckler, H. Timm, and G. Pauli, “Application of a fluorogenic PCR assay for typing and subtyping of influenza viruses in respiratory samples,” Journal of Clinical Microbiology, vol. 38, no. 4, pp. 1552–1558, 2000. View at Google Scholar · View at Scopus
  17. R. A. M. Fouchier, T. M. Bestebroer, S. Herfst, L. Van der Kemp, G. F. Rimmelzwaan, and A. D. M. E. Osterhaus, “Detection of influenza a viruses from different species by PCR amplification of conserved sequences in the matrix gene,” Journal of Clinical Microbiology, vol. 38, no. 11, pp. 4096–4101, 2000. View at Google Scholar · View at Scopus
  18. S. K. Poddar, “Detection of type and subtypes of influenza virus by hybrid formation of FRET probe with amplified target DNA and melting temperature analysis,” Journal of Virological Methods, vol. 108, no. 2, pp. 157–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Stone, J. Burrows, S. Schepetiuk et al., “Rapid detection and simultaneous subtype differentiation of influenza A viruses by real time PCR,” Journal of Virological Methods, vol. 117, no. 2, pp. 103–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Tseng, L. Chang, and C. Li, “Detection of airborne viruses in a pediatrics department measured using real-time qPCR coupled to an air-sampling filter method,” Journal of Environmental Health, vol. 73, no. 4, pp. 22–28, 2010. View at Google Scholar · View at Scopus
  21. R. Tellier, “Review of aerosol transmission of influenza A virus,” Emerging Infectious Diseases, vol. 12, no. 11, pp. 1657–1662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Brankston, L. Gitterman, Z. Hirji, C. Lemieux, and M. Gardam, “Transmission of influenza A in human beings,” The Lancet Infectious Diseases, vol. 7, no. 4, pp. 257–265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Fabian, J. J. McDevitt, E. A. Houseman, and D. K. Milton, “Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler,” Indoor Air, vol. 19, no. 5, pp. 433–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. D. Noti, W. G. Lindsley, F. M. Blachere et al., “Detection of infectious influenza virus in cough aerosols generated in a simulated patient examination room,” Clinical Infectious Diseases, vol. 54, no. 11, pp. 1569–1577, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Wei, M. Mcevoy, V. Razinkov et al., “Biophysical characterization of influenza virus subpopulations using field flow fractionation and multiangle light scattering: correlation of particle counts, size distribution and infectivity,” Journal of Virological Methods, vol. 144, no. 1-2, pp. 122–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. F. M. Blachere, W. G. Lindsley, T. A. Pearce et al., “Measurement of airborne influenza virus in a hospital emergency department,” Clinical Infectious Diseases, vol. 48, no. 4, pp. 438–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. G. Loudon and R. M. Roberts, “Droplet expulsion from the respiratory tract,” The American Review of Respiratory Disease, vol. 95, no. 3, pp. 435–442, 1967. View at Google Scholar · View at Scopus
  28. M. W. Jennison, “Atomizing of mouth and nose secretions into the air as revealed by high-speed photography,” in Aerobiology, F. R. Moulton, Ed., pp. 106–128, American Association for the Advancement of Science, Washington, DC, USA, 1942. View at Google Scholar
  29. R. S. Papineni and F. S. Rosenthal, “The size distribution of droplets in the exhaled breath of healthy human subjects,” Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung, vol. 10, no. 2, pp. 105–116, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Y. H. Chao, M. P. Wan, L. Morawska et al., “Characterization of expiration air jets and droplet size distributions immediately at the mouth opening,” Journal of Aerosol Science, vol. 40, no. 2, pp. 122–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. W. E. Bischoff, K. Swett, I. Leng, and T. R. Peters, “Exposure to influenza virus aerosols during routine patient care,” The Journal of Infectious Diseases, vol. 207, no. 7, pp. 1037–1046, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. D. K. Milton, M. P. Fabian, B. J. Cowling, M. L. Grantham, and J. J. McDevitt, “Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks,” PLoS Pathogens, vol. 9, no. 3, Article ID e1003205, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. B. J. Cowling, D. K. Ip, V. J. Fang et al., “Aerosol transmission is an important mode of influenza A virus spread,” Nature Communications, vol. 4, article 1935, 2013. View at Publisher · View at Google Scholar
  34. T. P. Weber and N. I. Stilianakis, “Inactivation of influenza A viruses in the environment and modes of transmission: a critical review,” Journal of Infection, vol. 57, no. 5, pp. 361–373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. A. Sattar and M. K. Ijaz, “Airborne viruses,” in Manual of Environmental Microbiology, C. J. Hurst, R. L. Crawford, M. J. McInerney, G. R. Knudsen, and L. D. Stetzenbach, Eds., pp. 871–883, ASM Press, Washington, DC, USA, 2002. View at Google Scholar
  36. L. Guertler, “Virology of human influenza,” in Influenza Report, B. S. Kamps, C. Hoffmann, and W. Preiser, Eds., pp. 87–91, Flying, Paris, France, 2006. View at Google Scholar
  37. A. C. Lowen, S. Mubareka, T. M. Tumpey, A. García-Sastre, and P. Palese, “The guinea pig as a transmission model for human influenza viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9988–9992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. C. Lowen, S. Mubareka, J. Steel, and P. Palese, “Influenza virus transmission is dependent on relative humidity and temperature,” PLoS Pathogens, vol. 3, no. 10, pp. 1470–1476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Steel, P. Palese, and A. C. Lowen, “Transmission of a 2009 pandemic influenza virus shows a sensitivity to temperature and humidity similar to that of an H3N2 seasonal strain,” Journal of Virology, vol. 85, no. 3, pp. 1400–1402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Yang, S. Elankumaran, and L. C. Marr, “Relationship between humidity and influenza’ s seasonality,” PLoS ONE, vol. 7, no. 10, Article ID e46789, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Pica, Y. Chou, N. M. Bouvier, and P. Palese, “Transmission of influenza B viruses in the Guinea pig,” Journal of Virology, vol. 86, no. 8, pp. 4279–4287, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. N. van Hoeven, C. Pappas, J. A. Belser et al., “Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3366–3371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Chou, R. A. Albrecht, N. Pica et al., “The m segment of the 2009 new pandemic H1N1 influenza virus is critical for its high transmission efficiency in the Guinea pig model,” Journal of Virology, vol. 85, no. 21, pp. 11235–11241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. T. T. Lam, H. Zhu, J. Wang et al., “Reassortment events among swine influenza a viruses in China: implications for the origin of the 2009 influenza pandemic,” Journal of Virology, vol. 85, no. 19, pp. 10279–10285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. M. B. Pearce, A. Jayaraman, C. Pappas et al., “Pathogenesis and transmission of swine origin A(H3N2)v influenza viruses in ferrets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 10, pp. 3944–3949, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. K. H. Chan, S. T. Lai, L. L. M. Poon, Y. Guan, K. Y. Yuen, and J. S. M. Peiris, “Analytical sensitivity of rapid influenza antigen detection tests for swine-origin influenza virus (H1N1),” Journal of Clinical Virology, vol. 45, no. 3, pp. 205–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. C. A. Corzo, A. Romagosa, S. A. Dee, M. R. Gramer, R. B. Morrison, and M. Torremorell, “Relationship between airborne detection of influenza A virus and the number of infected pigs,” Veterinary Journal, vol. 196, no. 2, pp. 171–175, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. C. I. Fairchild and J. F. Stampfer, “Particle concentration in exhaled breath,” The American Industrial Hygiene Association Journal, vol. 48, no. 11, pp. 948–949, 1987. View at Publisher · View at Google Scholar · View at Scopus
  49. D. A. Edwards, J. C. Man, P. Brand et al., “Inhaling to mitigate exhaled bioaerosols,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 50, pp. 17383–17388, 2004. View at Publisher · View at Google Scholar · View at Scopus