Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2016, Article ID 7310894, 5 pages
http://dx.doi.org/10.1155/2016/7310894
Research Article

Cumulative Impact of HIV and Multiple Concurrent Human Papillomavirus Infections on the Risk of Cervical Dysplasia

1Department of Emergency Medicine, University of Rochester, Rochester, NY 14642, USA
2Desmond Tutu HIV Centre, Institute of Infectious Diseases & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa
3Institute of Infectious Diseases & Molecular Medicine and Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa
4National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa

Received 1 December 2015; Accepted 26 January 2016

Academic Editor: Finn S. Pedersen

Copyright © 2016 David H. Adler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Clifford, M. A. G. Gonçalves, and S. Franceschi, “Human papillomavirus types among women infected with HIV: a meta-analysis,” AIDS, vol. 20, no. 18, pp. 2337–2344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. L. S. Massad, L. Ahdieh, L. Benning et al., “Evolution of cervical abnormalities among women with HIV-1: evidence from surveillance cytology in the Women's Interagency HIV Study,” Journal of Acquired Immune Deficiency Syndromes, vol. 27, no. 5, pp. 432–442, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. X.-W. Sun, T. V. Ellerbrock, O. Lungu, M. A. Chiasson, T. J. Bush, and T. C. Wright Jr., “Human papillomavirus infection in human immunodeficiency virus-seropositive women,” Obstetrics and Gynecology, vol. 85, no. 5, part 1, pp. 680–686, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. N. F. Schlecht, S. Kulaga, J. Robitaille et al., “Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia,” The Journal of the American Medical Association, vol. 286, no. 24, pp. 3106–3114, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. E. Nobbenhuis, J. M. M. Walboomers, T. J. M. Helmerhorst et al., “Relation of human papillomavirus status to cervical lesions and consequences for cervical-cancer screening: a prospective study,” The Lancet, vol. 354, no. 9172, pp. 20–25, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. G. M. Clifford, S. Franceschi, O. Keiser et al., “Immunodeficiency and the risk of cervical intraepithelial neoplasia 2/3 and cervical cancer: a nested case-control study in the Swiss HIV cohort study,” International Journal of Cancer, vol. 138, no. 7, pp. 1732–1740, 2016. View at Publisher · View at Google Scholar
  7. L. A. Denny, S. Franceschi, S. de Sanjosé, I. Heard, A. B. Moscicki, and J. Palefsky, “Human papillomavirus, human immunodeficiency virus and immunosuppression,” Vaccine, vol. 30, supplement 5, pp. F168–F174, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Trottier, S. Mahmud, J. C. M. Prado et al., “Type-specific duration of human papillomavirus infection: implications for human papillomavirus screening and vaccination,” Journal of Infectious Diseases, vol. 197, no. 10, pp. 1436–1447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. B. D. Bello, A. Spinillo, P. Alberizzi et al., “Cervical infections by multiple human papillomavirus (HPV) genotypes: prevalence and impact on the risk of precancerous epithelial lesions,” Journal of Medical Virology, vol. 81, no. 4, pp. 703–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Trottier, S. Mahmud, M. C. Costa et al., “Human papillomavirus infections with multiple types and risk of cervical neoplasia,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 7, pp. 1274–1280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. H. Yang, F. I. Bray, D. M. Parkin, J. W. Sellors, and Z.-F. Zhang, “Cervical cancer as a priority for prevention in different world regions: an evaluation using years of life lost,” International Journal of Cancer, vol. 109, no. 3, pp. 418–424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. X. Bosch, T. R. Broker, D. Forman et al., “Comprehensive control of human papillomavirus infections and related diseases,” Vaccine, vol. 31, supplement 7, pp. H1–H31, 2013. View at Publisher · View at Google Scholar
  13. K. S. Louie, S. De Sanjose, and P. Mayaud, “Epidemiology and prevention of human papillomavirus and cervical cancer in sub-Saharan Africa: a comprehensive review,” Tropical Medicine & International Health, vol. 14, no. 10, pp. 1287–1302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Bouvard, R. Baan, K. Straif et al., “A review of human carcinogens—part B: biological agents,” The Lancet Oncology, vol. 10, no. 4, pp. 321–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. H. Adler, M. Wallace, T. Bennie et al., “Cervical dysplasia and high-risk human papillomavirus infections among HIV-infected and HIV-uninfected adolescent females in South Africa,” Infectious Diseases in Obstetrics and Gynecology, vol. 2014, Article ID 498048, 6 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. A. C. McDonald, A. I. Tergas, L. Kuhn, L. Denny, and T. C. Wright Jr., “Distribution of human papillomavirus genotypes among HIV-positive and HIV-negative women in Cape Town, South Africa,” Frontiers in Oncology, vol. 4, article 48, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. F. X. Bosch, A. Lorincz, N. Muñoz, C. J. L. M. Meijer, and K. V. Shah, “The causal relation between human papillomavirus and cervical cancer,” Journal of Clinical Pathology, vol. 55, no. 4, pp. 244–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. J. Patel, N. R. Mugo, C. R. Cohen et al., “Multiple human papillomavirus infections and HIV seropositivity as risk factors for abnormal cervical cytology among female sex workers in Nairobi,” International Journal of STD and AIDS, vol. 24, no. 3, pp. 221–225, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. J. E. Levi, S. Fernandes, A. F. Tateno et al., “Presence of multiple human papillomavirus types in cervical samples from HIV-infected women,” Gynecologic Oncology, vol. 92, no. 1, pp. 225–231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. N. G. Campos, A. C. Rodriguez, P. E. Castle et al., “Persistence of concurrent infections with multiple human papillomavirus types: a population-based Cohort Study,” Journal of Infectious Diseases, vol. 203, no. 6, pp. 823–827, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M.-C. Rousseau, J. S. Pereira, J. C. M. Prado, L. L. Villa, T. E. Rohan, and E. L. Franco, “Cervical coinfection with human papillomavirus (HPV) types as a predictor of acquisition and persistence of HPV infection,” Journal of Infectious Diseases, vol. 184, no. 12, pp. 1508–1517, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Y. F. Ho, R. D. Burk, S. Klein et al., “Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia,” Journal of the National Cancer Institute, vol. 87, no. 18, pp. 1365–1371, 1995. View at Publisher · View at Google Scholar · View at Scopus