Table of Contents Author Guidelines Submit a Manuscript
Advances in Virology
Volume 2017, Article ID 7028194, 6 pages
https://doi.org/10.1155/2017/7028194
Review Article

Herpes Simplex Virus Latency: The DNA Repair-Centered Pathway

Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA

Correspondence should be addressed to Jay C. Brown; ude.ainigriv@g2bcj

Received 21 November 2016; Accepted 16 January 2017; Published 1 February 2017

Academic Editor: Finn S. Pedersen

Copyright © 2017 Jay C. Brown. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Bloom, “Alphaherpesvirus latency: a dynamic state of transcription and reactivation,” Advances in Virus Research, vol. 94, pp. 53–80, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Sinclair, “Human cytomegalovirus: latency and reactivation in the myeloid lineage,” Journal of Clinical Virology, vol. 41, no. 3, pp. 180–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Thorley-Lawson, J. B. Hawkins, S. I. Tracy, and M. Shapiro, “The pathogenesis of Epstein-Barr virus persistent infection,” Current Opinion in Virology, vol. 3, no. 3, pp. 227–232, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. M. P. Nicoll, J. T. Proença, and S. Efstathiou, “The molecular basis of herpes simplex virus latency,” FEMS Microbiology Reviews, vol. 36, no. 3, pp. 684–705, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Roizman, D. M. Knipe, and R. J. Whitley, “Herpes simplex viruses,” in Fields Virology, pp. 2803–2819, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2013. View at Google Scholar
  6. C. E. Lilley, C. T. Carson, A. R. Muotri, F. H. Gage, and M. D. Weitzman, “DNA repair proteins affect the lifecycle of herpes simplex virus 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 16, pp. 5844–5849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. D. Weitzman and J. B. Weitzman, “What's the damage? the impact of pathogens on pathways that maintain host genome integrity,” Cell Host and Microbe, vol. 15, no. 3, pp. 283–294, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Smith and S. K. Weller, “HSV-I and the cellular DNA damage response,” Future Virology, vol. 10, no. 4, pp. 383–397, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Brown and W. W. Newcomb, “Herpesvirus capsid assembly: insights from structural analysis,” Current Opinion in Virology, vol. 1, no. 2, pp. 142–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Brown, M. A. McVoy, and F. L. Homa, “Packaging DNA into herpesvirus capsids,” in Structure-Function Relationships of Human Pathogenic Viruses, A. Holzenburg and E. Bogner, Eds., Kluwer Academic/Plenum Publishers, London, UK, 2002. View at Google Scholar
  11. R. J. Diefenbach, M. Miranda-Saksena, M. W. Douglas, and A. L. Cunningham, “Transport and egress of herpes simplex virus in neurons,” Reviews in Medical Virology, vol. 18, no. 1, pp. 35–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. A. Waggoner-Fountain and L. B. Grossman, “Herpes Simplex Virus,” Pediatrics in Review, vol. 25, no. 3, pp. 86–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Efstathiou and C. M. Preston, “Towards an understanding of the molecular basis of herpes simplex virus latency,” Virus Research, vol. 111, no. 2, pp. 108–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. Kriesel, “Reactivation of herpes simplex virus: the role of cytokines and intracellular factors,” Current Opinion in Infectious Diseases, vol. 12, no. 3, pp. 235–238, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Held and T. Derfuss, “Control of HSV-1 latency in human trigeminal ganglia—current overview,” Journal of Neurovirology, vol. 17, no. 6, pp. 518–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. E. Wilkinson and S. K. Weller, “Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response,” Journal of Virology, vol. 78, no. 9, pp. 4783–4796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. S. Turnell and R. J. Grand, “DNA viruses and the cellular DNA-damage response,” Journal of General Virology, vol. 93, no. 10, pp. 2076–2097, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. K. N. Mohni, A. S. Mastrocola, P. Bai, S. K. Weller, and C. D. Heinen, “DNA mismatch repair proteins are required for efficient herpes simplex virus 1 replication,” Journal of Virology, vol. 85, no. 23, pp. 12241–12253, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. N. Mohni, A. R. Dee, S. Smith, A. J. Schumacher, and S. K. Weller, “Efficient herpes simplex virus 1 replication requires cellular ATR pathway proteins,” Journal of Virology, vol. 87, no. 1, pp. 531–542, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Karttunen, J. N. Savas, C. McKinney et al., “Co-opting the Fanconi anemia genomic stability pathway enables herpesvirus DNA synthesis and productive growth,” Molecular Cell, vol. 55, no. 1, pp. 111–122, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Millhouse, X. Wang, N. W. Fraser, L. Faber, and T. M. Block, “Direct evidence that HSV DNA damaged by ultraviolet (UV) irradiation can be repaired in a cell type-dependent manner,” Journal of NeuroVirology, vol. 18, no. 3, pp. 231–243, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Sykora, J.-L. Yang, L. K. Ferrarelli et al., “Modulation of DNA base excision repair during neuronal differentiation,” Neurobiology of Aging, vol. 34, no. 7, pp. 1717–1727, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. A. De Bruyn Kops and D. M. Knipe, “Preexisting nuclear architecture defines the intranuclear location of herpesvirus DNA replication structures,” Journal of Virology, vol. 68, no. 6, pp. 3512–3526, 1994. View at Google Scholar · View at Scopus
  24. N. Shirata, A. Kudoh, T. Daikoku et al., “Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection,” Journal of Biological Chemistry, vol. 280, no. 34, pp. 30336–30341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. K. N. Mohni, C. M. Livingston, D. Cortez, and S. K. Weller, “ATR and ATRIP are recruited to herpes simplex virus type 1 replication compartments even though ATR signaling is disabled,” Journal of Virology, vol. 84, no. 23, pp. 12152–12164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. J. Taylor and D. M. Knipe, “Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8,” Journal of Virology, vol. 78, no. 11, pp. 5856–5866, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Kawasaki, H. Suemori, K. Mizuseki et al., “Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1580–1585, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Ichihashi, H. Nagai, and K. Matsunaga, “Sunlight is an important causative factor of recurrent herpes simplex,” Cutis, vol. 74, no. 5, pp. 14–18, 2004. View at Google Scholar · View at Scopus
  29. M. L. Bochman, K. Paeschke, and V. A. Zakian, “DNA secondary structures: stability and function of G-quadruplex structures,” Nature Reviews Genetics, vol. 13, no. 11, pp. 770–780, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. Brown, “The role of DNA repair in herpesvirus pathogenesis,” Genomics, vol. 104, no. 4, pp. 287–294, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Volcy and N. W. Fraser, “DNA damage promotes herpes simplex virus-1 protein expression in a neuroblastoma cell line,” Journal of NeuroVirology, vol. 19, no. 1, pp. 57–64, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. E. W. Englander, “DNA damage response in peripheral nervous system: coping with cancer therapy-induced DNA lesions,” DNA Repair, vol. 12, no. 8, pp. 685–690, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. G. S. Hayward, R. J. Jacob, S. C. Wadsworth, and B. Roizman, “Anatomy of herpes simplex virus DNA: evidence for four populations of molecules that differ in the relative orientations of their long and short components,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 11, pp. 4243–4247, 1975. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Delius and J. B. Clements, “A partial denaturation map of Herpes simplex virus type 1 DNA: evidence for inversions of the unique DNA regions,” Journal of General Virology, vol. 33, no. 1, pp. 125–133, 1976. View at Publisher · View at Google Scholar · View at Scopus
  35. R. E. Dutch, V. Bianchi, and I. R. Lehman, “Herpes simplex virus type 1 DNA replication is specifically required for high-frequency homologous recombination between repeated sequences,” Journal of Virology, vol. 69, no. 5, pp. 3084–3089, 1995. View at Google Scholar · View at Scopus
  36. X. Fu, H. Wang, and X. Zhang, “High-frequency intermolecular homologous recombination during herpes simplex virus-mediated plasmid DNA replication,” Journal of Virology, vol. 76, no. 12, pp. 5866–5874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. J.-M. Chen, D. N. Cooper, N. Chuzhanova, C. Férec, and G. P. Patrinos, “Gene conversion: mechanisms, evolution and human disease,” Nature Reviews Genetics, vol. 8, no. 10, pp. 762–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Haarr, A. Nilsen, P. M. Knappskog, and N. Langeland, “Stability of glycoprotein gene sequences of herpes simplex virus type 2 from primary to recurrent human infection, and diversity of the sequences among patients attending an STD clinic,” BMC Infectious Diseases, vol. 14, no. 1, article 63, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Botting, X. Lu, and S. J. Triezenberg, “H2AX phosphorylation and DNA damage kinase activity are dispensable for herpes simplex virus replication,” Virology Journal, vol. 13, no. 1, article 15, 2016. View at Publisher · View at Google Scholar · View at Scopus