Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2010, Article ID 457964, 8 pages
http://dx.doi.org/10.1155/2010/457964
Research Article

Biofunctional Characteristics of Lignite Fly Ash Modified by Humates: A New Soil Conditioner

1Inorganic Chemistry Laboratory, Department of Chemistry, University of Athens, Panepistimiopolis, 157 71 Athens, Greece
2School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, Zografou Campus, 157 73 Athens, Greece

Received 29 December 2009; Accepted 2 March 2010

Academic Editor: Spyros Perlepes

Copyright © 2010 Konstantinos Chassapis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. V. Mattigod, D. Rai, L. E. Eary, and C. C. Ainsworth, “Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues. I. Review of the major elements,” Journal of Environmental Quality, vol. 19, no. 2, pp. 188–201, 1990. View at Google Scholar · View at Scopus
  2. S. Jala and D. Goyal, “Fly ash as a soil ameliorant for improving crop production—a review,” Bioresource Technology, vol. 97, no. 9, pp. 1136–1146, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. K. Antiohos and S. Tsimas, “A novel way to upgrade the coarse part of a high calcium fly ash for reuse into cement systems,” Waste Management, vol. 27, no. 5, pp. 675–683, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. K. Antiohos, V. G. Papadakis, E. Chaniotakis, and S. Tsimas, “Improving the performance of ternary blended cements by mixing different types of fly ashes,” Cement and Concrete Research, vol. 37, no. 6, pp. 877–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. C. Adriano, A. L. Page, A. A. Elseewi, A. C. Chang, and I. Straughan, “Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review,” Journal of Environmental Quality, vol. 9, no. 3, pp. 333–344, 1980. View at Google Scholar · View at Scopus
  6. C. L. Carlson and D. C. Adriano, “Environmental impacts of coal combustion residues,” Journal of Environmental Quality, vol. 22, no. 2, pp. 227–247, 1993. View at Google Scholar · View at Scopus
  7. K. Chassapis, M. Roulia, and D. Tsirigoti, “Chemistry of metal-humic complexes contained in Megalopolis lignite and potential application in modern organomineral fertilization,” International Journal of Coal Geology, vol. 78, no. 4, pp. 288–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Chassapis and M. Roulia, “Evaluation of low-rank coals as raw material for Fe and Ca organomineral fertilizer using a new EDXRF method,” International Journal of Coal Geology, vol. 75, no. 3, pp. 185–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Page, A. A. Elseewi, and I. R. Straughan, “Physical and chemical properties of fly ash from coal-fired power plants with reference to enviromental impacts,” Residue Reviews, vol. 71, pp. 83–120, 1979. View at Google Scholar
  10. R. Sikka and B. D. Kansal, “Effect of fly-ash application on yield and nutrient composition of rice, wheat and on pH and available nutrient status of soils,” Bioresource Technology, vol. 51, no. 2-3, pp. 199–203, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Kalra, H. C. Joshi, A. Chaudhary, R. Choudhary, and S. K. Sharma, “Impact of flyash incorporation in soil on germination of crops,” Bioresource Technology, vol. 61, no. 1, pp. 39–41, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. D. El-Mogazi, D. J. Lisk, and L. H. Weinstein, “A review of physical, chemical, and biological properties of fly ash and effects on agricultural ecosystems,” Science of the Total Environment, vol. 74, no. 1, pp. 1–37, 1988. View at Google Scholar · View at Scopus
  13. A. A. Elseewi, S. R. Grimm, A. L. Page, and I. R. Straughan, “Boron enrichment of plants and soils treated with coal ash,” Journal of Plant Nutrition, vol. 3, pp. 409–427, 1981. View at Google Scholar
  14. R. L. Aitken, D. J. Campbell, and L. C. Bell, “Properties of Australian fly ash relevant to their agronomic utilization,” Australian Journal of Soil Research, vol. 22, pp. 443–453, 1984. View at Google Scholar
  15. D. C. Elfving, C. A. Bache, W. H. Gutenmann, and D. J. Lisk, “Analyzing crops grown on waste-amended soils,” BioCycle, vol. 22, no. 6, pp. 44–47, 1981. View at Google Scholar · View at Scopus
  16. L. Giardini, “Aspetti agronomici della gestione dei reflui zootecnici,” Rivista di Ingegnaria Agraria, vol. 12, pp. 679–689, 1991. View at Google Scholar
  17. K. Chassapis, M. Roulia, and G. Nika, “Fe(III)-humate complexes from megalopolis peaty lignite: a novel eco-friendly fertilizer,” Fuel, vol. 89, no. 7, pp. 1480–1484, 2010. View at Publisher · View at Google Scholar
  18. A. Piccolo, “The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science,” Advances in Agronomy, vol. 75, pp. 57–134, 2002. View at Google Scholar · View at Scopus
  19. S. Wang, T. Terdkiatburana, and M. O. Tadé, “Single and co-adsorption of heavy metals and humic acid on fly ash,” Separation and Purification Technology, vol. 58, no. 3, pp. 353–358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Wang and Z. H. Zhu, “Humic acid adsorption on fly ash and its derived unburned carbon,” Journal of Colloid and Interface Science, vol. 315, no. 1, pp. 41–46, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. G. Kalinichev and R. J. Kirkpatrick, “Molecular dynamics simulation of cationic complexation with natural organic matter,” European Journal of Soil Science, vol. 58, no. 4, pp. 909–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Roulia, K. Chassapis, J. A. Kapoutsis, E. I. Kamitsos, and T. Savvidis, “Influence of thermal treatment on the water release and the glassy structure of perlite,” Journal of Materials Science, vol. 41, no. 18, pp. 5870–5881, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. F. F. Barbosa, K. J. D. MacKenzie, and C. Thaumaturgo, “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers,” International Journal of Inorganic Materials, vol. 2, no. 4, pp. 309–317, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361–1403, 1918. View at Google Scholar · View at Scopus
  25. H. Freundlich, “Über die Adsorption in Lösungen,” Zeitschrift für physikalische Chemie, vol. 57, pp. 385–470, 1906. View at Google Scholar
  26. M. Roulia and A. A. Vassiliadis, “Sorption characterization of a cationic dye retained by clays and perlite,” Microporous and Mesoporous Materials, vol. 116, no. 1–3, pp. 732–740, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” Journal of the American Chemical Society, vol. 60, no. 2, pp. 309–319, 1938. View at Google Scholar · View at Scopus
  28. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London, UK, 2nd edition, 1982.
  29. W. D. Harkins and G. Jura, “Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid,” Journal of the American Chemical Society, vol. 66, no. 8, pp. 1366–1373, 1944. View at Google Scholar · View at Scopus
  30. L. V. Radushkevich and M. M. Dubinin, “The equation of the characteristic curve of activated charcoal,” Doklady Akademii Nauk SSSR, vol. 55, pp. 327–329, 1947. View at Google Scholar
  31. T. Hattori, Microbial Life in the Soil. An Introduction, Marcel Dekker, New York, NY, USA, 1973.
  32. W. Wang, Y. Qin, D. Song, and K. Wang, “Column leaching of coal and its combustion residues, Shizuishan, China,” International Journal of Coal Geology, vol. 75, no. 2, pp. 81–87, 2008. View at Publisher · View at Google Scholar · View at Scopus