Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2010 (2010), Article ID 618202, 12 pages
Research Article

Hydrogen-Bonded Networks Based on Cobalt(II), Nickel(II), and Zinc(II) Complexes of N,N'-Diethylurea

1Department of Chemistry, University of Patras, 265 04 Patras, Greece
2Institute of Materials Science, National Centre of Scientific Research “Demokritos”, 153 10 Aghia Paraskevi Attikis, Greece
3Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 157 71 Zografou, Greece

Received 8 April 2010; Accepted 1 May 2010

Academic Editor: Spyros Perlepes

Copyright © 2010 Labrini Drakopoulou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


N,N'-diethylurea (DEU) was employed as a ligand to form the octahedral complexes (M=Co, Ni and Zn). Compounds (1), (2), (3), and (4) have been prepared from the reactions of DEU and the appropriate hydrated metal(II) salts in EtOH in the presence of 2,2-dimethoxypropane. Crystal structure determinations demonstrate the existence of cations and (in 2–4) or (in 1) counterions. The cations in the solid state are stabilized by a pseudochelate effect due to the existence of six strong intracationic hydrogen bonds. The cations and counterions self-assemble to form hydrogen-bonded 2D architectures in 2–4 that conform to the kgd (kagome dual) network, and a 3D hydrogen-bonded rtl (rutile) network in 1. The nature of the resulting supramolecular structures is influenced by the nature of the counter-ion. The complexes were also characterized by vibrational spectroscopy (IR).