Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2010, Article ID 936834, 11 pages
http://dx.doi.org/10.1155/2010/936834
Research Article

Studies of the Antiproliferative Activity of Ruthenium (II) Cyclopentadienyl-Derived Complexes with Nitrogen Coordinated Ligands

1Department de Química Inorgànica, Universitat de Barcelona, Martí y Franquès 1-11, 08028 Barcelona, Spain
2Institut de Biotecnologia i de Biomedecina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
3Centro de Ciências Moleculares e Materiais, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
4Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
5Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Avenue Rovisco Pais, 1049-001 Lisboa, Portugal
6Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Avenue Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal

Received 9 February 2010; Accepted 20 April 2010

Academic Editor: Spyros P. Perlepes

Copyright © 2010 Virtudes Moreno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Köpf and P. Köpf-Maier, “Titanocen-dichlorid—das erste metallocen mit cancerostatischer wirksamkeit,” Angewandte Chemie, vol. 91, no. 6, pp. 509–512, 2006. View at Google Scholar
  2. T. M. Klapötke, H. Köpf, I. C. Tornieporth-Oetting, and P. S. White, “Synthesis, characterization, and structural investigation of the first bioinorganic titanocene(IV) α-amino acid complexes prepared from the antitumor agent titanocene dichloride,” Organometallics, vol. 13, no. 9, pp. 3628–3633, 1994. View at Google Scholar · View at Scopus
  3. Y. K. Yan, M. Melchart, A. Habtemariam, and P. J. Sadler, “Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes,” Chemical Communications, no. 38, pp. 4764–4776, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Strohfeldt and M. Tacke, “Bioorganometallic fulvene-derived titanocene anti-cancer drugs,” Chemical Society Reviews, vol. 37, no. 6, pp. 1174–1187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. G. Hartinger and P. J. Dyson, “Bioorganometallic chemistry—from teaching paradigms to medicinal applications,” Chemical Society Reviews, vol. 38, no. 2, pp. 391–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Meléndez, “Titanium complexes in cancer treatment,” Critical Reviews in Oncology/Hematology, vol. 42, no. 3, pp. 309–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Buss, B. T. Greene, J. Turner, F. M. Torti, and S. V. Torti, “Iron chelators in cancer chemotherapy,” Current Topics in Medicinal Chemistry, vol. 4, no. 15, pp. 1623–1635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Messori and G. Marcon, “Gold complexes as antitumor agents,” Metal Ions in Biological Systems, vol. 42, pp. 385–424, 2004. View at Google Scholar · View at Scopus
  9. M. A. Jakupec, M. Galanski, and B. K. Keppler, “The effect of cytoprotective agents in platinum anticancer therapy,” Metal Ions in Biological Systems, vol. 42, pp. 179–208, 2004. View at Google Scholar · View at Scopus
  10. Q. Li, M. F. C. Guedes da Silva, and A. J. L. Pombeiro, “Diorganotin(IV) derivatives of substituted benzohydroxamic acids with high antitumor activity,” Chemistry: A European Journal, vol. 10, no. 6, pp. 1456–1462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. G. Hartinger, S. Zorbas-Seifried, M. A. Jakupec, B. Kynast, H. Zorbas, and B. K. Keppler, “From bench to bedside—preclinical and early clinical development of the anticancer agent indazolium trans[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A),” Journal of Inorganic Biochemistry, vol. 100, no. 5-6, pp. 891–904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Kapitza, M. Pongratz, M. A. Jakupec et al., “Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells,” Journal of Cancer Research and Clinical Oncology, vol. 131, no. 2, pp. 101–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Jakupec, V. B. Arion, S. Kapitza et al., “KP1019 (FFC14A) from bench to bedside: preclinical and early clinical development—an overview,” International Journal of Clinical Pharmacology and Therapeutics, vol. 43, no. 12, pp. 595–596, 2005. View at Google Scholar · View at Scopus
  14. C. S. Allardyce, P. J. Dyson, D. J. Ellis, and S. L. Heath, “[Ru(η6-p-cymene)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells,” Chemical Communications, no. 15, pp. 1396–1397, 2001. View at Google Scholar · View at Scopus
  15. C. S. Allardyce, P. J. Dyson, D. J. Ellis, P. A. Salter, and R. Scopelliti, “Synthesis and characterisation of some water soluble ruthenium(II)-arene complexes and an investigation of their antibiotic and antiviral properties,” Journal of Organometallic Chemistry, vol. 668, no. 1-2, pp. 35–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. N. V. Gopal, D. Jayaraju, and A. K. Kondapi, “Inhibition of topoisomerase II catalytic activity by two ruthenium compounds: a ligand-dependent mode of action,” Biochemistry, vol. 38, no. 14, pp. 4382–4388, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. N. V. Gopal, N. Konuru, and A. K. Kondapi, “Topoisomerase II antagonism and anticancer activity of coordinated derivatives of [RuCI2(C6H6)(dmso)],” Archives of Biochemistry and Biophysics, vol. 401, no. 1, pp. 53–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. R. E. Morris, R. E. Aird, P. S. DMurdoch et al., “Inhibition of cancer cell growth by ruthenium(II) arene complexes,” Journal of Medicinal Chemistry, vol. 44, no. 22, pp. 3616–3621, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. L. A. Huxham, E. L. S. Cheu, B. O. Patrick, and B. R. James, “The synthesis, structural characterization, and in vitro anti-cancer activity of chloro(p-cymene) complexes of ruthenium(II) containing a disulfoxide ligand,” Inorganica Chimica Acta, vol. 352, pp. 238–246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. H. A. Wee and P. J. Dyson, “Classical and non-classical ruthenium-based anticancer drugs: towards targeted chemotherapy,” European Journal of Inorganic Chemistry, no. 20, pp. 4003–4018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. F. A. Peacock and P. J. Sadler, “Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents,” Chemistry: An Asian Journal, vol. 3, no. 11, pp. 1890–1899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Maksimoska, L. Feng, K. Harms et al., “Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes,” Journal of the American Chemical Society, vol. 130, no. 47, pp. 15764–15765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. H. Garcia, T. S. Morais, P. Florindo et al., “Inhibition of cancer cell growth by ruthenium(II) cyclopentadienyl derivative complexes with heteroaromatic ligands,” Journal of Inorganic Biochemistry, vol. 103, no. 3, pp. 354–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Valente, “Síntese de metalocenos de ruténio e avaliação das suas potencialidades antitumorais,” , M.S. thesis, Faculty of Sciences of University of Lisbon, 2007. View at Google Scholar
  25. M. H. Garcia, P. Florindo, M. F. M. Piedade et al., “Synthesis of organometallic Ru(II) and Fe(II) complexes containing fused rings hemi-helical ligands as chromophores. Evaluation of non-linear optical properties by HRS,” Journal of Organometallic Chemistry, vol. 693, no. 18, pp. 2987–2999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. H. Garcia, P. Florindo, M. F. M. Piedade et al., “Synthesis and structural characterization of ruthenium(II) and iron(II) complexes containing 1,2-di-(2-thienyl)-ethene derived ligands as chromophores,” Journal of Organometallic Chemistry, vol. 694, no. 3, pp. 433–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. I. Bruce and N. J. Windsor, “Cyclopentadienyl-ruthenium and -osmium chemistry. IV. Convenient high-yield synthesis of some cyclopentadienyl ruthenium or osmium tertiary phosphine halide complexes,” Australian Journal of Chemistry, vol. 30, pp. 1601–1604, 1977. View at Google Scholar
  28. H. Mishra and R. Mukherjee, “Half-sandwich η6-benzene Ru(II) complexes of pyridylpyrazole and pyridylimidazole ligands: synthesis, spectra, and structure,” Journal of Organometallic Chemistry, vol. 691, no. 16, pp. 3545–3555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. C. Rodrigues, “Síntese de Novos Materiais Organometalicos con Propriedades de Não-linearidade Optica,” , Ph.D. thesis, Faculty of Sciences of University of Lisbon, 1999. View at Google Scholar
  30. I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger, “A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V,” Journal of Immunological Methods, vol. 184, no. 1, pp. 39–51, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. D. D. Perrin, W. L. F. Amarego, and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon, New York, NY, USA, 2nd edition, 1980.
  32. N. G. Conelly and W. E. Geiger, “Chemical redox agents for organometallic chemistry,” Chemical Reviews, vol. 96, no. 2, pp. 877–910, 1996. View at Publisher · View at Google Scholar
  33. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus