Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2012, Article ID 298739, 9 pages
http://dx.doi.org/10.1155/2012/298739
Research Article

Fine Tuning of Redox Networks on Multiheme Cytochromes from Geobacter sulfurreducens Drives Physiological Electron/Proton Energy Transduction

1Requimte-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
2Departamento de Espectroscopía y Estructura Molecular, Instituto de Química-Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
3Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
4New England Biolabs, 240 County Road, Ipswich, MA 01938, USA

Received 13 April 2012; Accepted 11 June 2012

Academic Editor: Takao Yagi

Copyright © 2012 Leonor Morgado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Bond and D. R. Lovley, “Electricity production by Geobacter sulfurreducens attached to electrodes,” Applied and Environmental Microbiology, vol. 69, no. 3, pp. 1548–1555, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. D. R. Lovley, “Fe(lII) and Mn(lV) reduction,” in Environmental Microbe-Metal Interactions, A. Press, Ed., ASM Press, Washington, DC, USA, 2000. View at Google Scholar
  3. D. R. Lovley, T. Ueki, T. Zhang et al., “Geobacter. The microbe electric's physiology, ecology, and practical applications,” Advances in Microbial Physiology, vol. 59, pp. 1–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Inoue, X. Qian, L. Morgado et al., “Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens,” Applied and Environmental Microbiology, vol. 76, no. 12, pp. 3999–4007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. E. Butler, N. D. Young, and D. R. Lovley, “Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes,” BMC Genomics, vol. 11, no. 1, article 40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. B. C. Kim, C. Leang, Y. H. R. Ding, R. H. Glaven, M. V. Coppi, and D. R. Lovley, “OmcF, a putative c-type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens,” Journal of Bacteriology, vol. 187, no. 13, pp. 4505–4513, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Qian, T. Mester, L. Morgado et al., “Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens,” Biochimica et Biophysica Acta, vol. 1807, no. 4, pp. 404–412, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Qian, G. Reguera, T. Mester, and D. R. Lovley, “Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins,” FEMS Microbiology Letters, vol. 277, no. 1, pp. 21–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. R. Lovley, “Bug juice: harvesting electricity with microorganisms,” Nature Reviews Microbiology, vol. 4, no. 7, pp. 497–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Mahadevan, D. R. Bond, J. E. Butler et al., “Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling,” Applied and Environmental Microbiology, vol. 72, no. 2, pp. 1558–1568, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Srinivasan and R. Mahadevan, “Characterization of proton production and consumption associated with microbial metabolism,” BMC Biotechnology, vol. 10, article 2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. O. Louro, “Proton thrusters: overview of the structural and functional features of soluble tetrahaem cytochromes c3,” Journal of Biological Inorganic Chemistry, vol. 12, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. O. Louro, T. Catarino, J. LeGall, and A. V. Xavier, “Redox-Bohr effect in electron/proton energy transduction: cytochrome c3 coupled to hydrogenase works as a 'proton thruster' in Desulfovibrio vulgaris,” Journal of Biological Inorganic Chemistry, vol. 2, no. 4, pp. 488–491, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. P. Williams, “The history and the hypotheses concerning ATP-formation by energised protons,” FEBS Letters, vol. 85, no. 1, pp. 9–19, 1978. View at Publisher · View at Google Scholar · View at Scopus
  15. P. R. Pokkuluri, Y. Y. Londer, N. E. C. Duke, W. C. Long, and M. Schiffer, “Family of cytochrome c7-type proteins from Geobacter sulfurreducens: structure of one cytochrome c7 at 1.45 Å resolution,” Biochemistry, vol. 43, no. 4, pp. 849–859, 2004. View at Google Scholar · View at Scopus
  16. L. Morgado, V. B. Paixão, M. Schiffer, P. R. Pokkuluri, M. Bruix, and C. A. Salgueiro, “Revealing the structural origin of the redox-Bohr effect: the first solution structure of a cytochrome from Geobacter sulfurreducens,” Biochemical Journal, vol. 441, no. 1, pp. 179–187, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. P. R. Pokkuluri, Y. Y. Londer, X. Yang et al., “Structural characterization of a family of cytochromes c7 involved in Fe(III) respiration by Geobacter sulfurreducens,” Biochimica et Biophysica Acta, vol. 1797, no. 2, pp. 222–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. E. S. Shelobolina, M. V. Coppi, A. A. Korenevsky et al., “Importance of c-type cytochromes for U(VI) reduction by Geobacter sulfurreducens,” BMC Microbiology, vol. 7, article 16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. H. R. Ding, K. K. Hixson, M. A. Aklujkar et al., “Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor,” Biochimica et Biophysica Acta, vol. 1784, no. 12, pp. 1935–1941, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Morgado, M. Brulx, M. Pessanha, Y. Y. Londer, and C. A. Salgueiro, “Thermodynamic characterization of a triheme cytochrome family From Geobacter sulfurreducens reveals mechanistic And functional diversity,” Biophysical Journal, vol. 99, no. 1, pp. 293–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Kim and Y. J. Lee, “Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel-cell,” International Journal of Hydrogen Energy, vol. 35, no. 23, pp. 13028–13034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. T. Babauta, H. D. Nguyen, T. D. Harrington, R. Renslow, and H. Beyenal, “pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer,” Biotechnology and Bioengineering. In press. View at Publisher · View at Google Scholar
  23. A. E. Franks, K. P. Nevin, H. Jia, M. Izallalen, T. L. Woodard, and D. R. Lovley, “Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm,” Energy and Environmental Science, vol. 2, no. 1, pp. 113–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. I. Torres, A. K. Marcus, and B. E. Rittmann, “Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria,” Biotechnology and Bioengineering, vol. 100, no. 5, pp. 872–881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. I. Torres, H. S. Lee, and B. E. Rittmann, “Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells,” Environmental Science and Technology, vol. 42, no. 23, pp. 8773–8777, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Liu, H. Kim, R. R. Franklin, and D. R. Bond, “Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms,” ChemPhysChem, vol. 12, no. 12, pp. 2235–2241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Richter, K. P. Nevin, H. Jia, D. A. Lowy, D. R. Lovley, and L. M. Tender, “Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer,” Energy and Environmental Science, vol. 2, no. 5, pp. 506–516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. H. R. Ding, K. K. Hixson, C. S. Giometti et al., “The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions,” Biochimica et Biophysica Acta, vol. 1764, no. 7, pp. 1198–1206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. R. Lloyd, C. Leang, A. L. Hodges Myerson et al., “Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens,” Biochemical Journal, vol. 369, no. 1, pp. 153–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Srikanth, E. Marsili, M. C. Flickinger, and D. R. Bond, “Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes,” Biotechnology and Bioengineering, vol. 99, no. 5, pp. 1065–1073, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Marsili, J. B. Rollefson, D. B. Baron, R. M. Hozalski, and D. R. Bond, “Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms,” Applied and Environmental Microbiology, vol. 74, no. 23, pp. 7329–7337, 2008. View at Publisher · View at Google Scholar · View at Scopus