Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2013, Article ID 315972, 16 pages
http://dx.doi.org/10.1155/2013/315972
Research Article

Synthesis, Characterization, Antimicrobial, DNA Cleavage, and Antioxidant Studies of Some Metal Complexes Derived from Schiff Base Containing Indole and Quinoline Moieties

Department of Studies and Research in Chemistry, Gulbarga University, Gulbarga-585 106, Karnataka, India

Received 22 April 2013; Accepted 28 July 2013

Academic Editor: Claudio Pettinari

Copyright © 2013 Mahendra Raj Karekal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Misra, A. Hitkari, A. K. Saxena, S. Gurtu, and K. Shanker, “Biologically active indolylmethyl-1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 4H-1,3,4-triazoles and 1,2,4-triazines,” European Journal of Medicinal Chemistry, vol. 31, no. 7-8, pp. 629–634, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Rani, V. K. Srivastava, and A. Kumar, “Synthesis and antiinflammatory activity of heterocyclic indole derivatives,” European Journal of Medicinal Chemistry, vol. 39, no. 5, pp. 449–452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. El-Gendy Adel, A. Abdou Naida, Z. Sarhan El-Taher, and A. El-Banna Hosney, “Synthesis and biological activity of some new spio-[indoline-3,2′-thiazolidine]-2,4,-diones,” Alexandria Journal of Pharmaceutical Science, vol. 7, pp. 99–103, 1993. View at Google Scholar
  4. N. Karali, A. Gürsoy, F. Kandemirli et al., “Synthesis and structure-antituberculosis activity relationship of 1H-indole-2,3-dione derivatives,” Bioorganic and Medicinal Chemistry, vol. 15, no. 17, pp. 5888–5904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Dandia, V. Sehgal, and P. Singh, “Synthesis of fluorine containing 2-aryl-3-pyrazolyl/pyranyl/isoxazolinyl-indole derivative as antifungal and antibacterial agents,” Indian Journal of Chemistry Section B, vol. 32, pp. 1288–1291, 1993. View at Google Scholar
  6. A. S. Kalgutkar, B. C. Crews, S. Saleh, D. Prudhomme, and L. J. Marnett, “Indolyl esters and amides related to indomethacin are selective COX-2 inhibitors,” Bioorganic and Medicinal Chemistry, vol. 13, no. 24, pp. 6810–6822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Olgen and D. Nebioglu, “Synthesis and biological evaluation of N-substituted indole esters as inhibitors of cyclo-oxygenase-2 (COX-2),” Farmaco, vol. 57, no. 8, pp. 677–683, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. I. A. Leneva, N. I. Fadeeva, and I. T. Fedykina, Proceedings of the 7th International Conference on Antiviral Research, Abstract 187, 1994.
  9. A. Y. Merwade, S. B. Rajur, and L. D. Basanagoudar, “Synthesis and antiallergic acitivities of 10-substituted-4-chloro-12-methyl(or phenyl)-1,2-dihydroquinoxalino[1,2-a]indoles,” Indian Journal of Chemistry B, vol. 29, no. 12, pp. 1113–1117, 1990. View at Google Scholar · View at Scopus
  10. A. E. Fernandez and V. A. Monge, “Spanish Patent 400,436,” Chemical Abstract, 83, 1142059, Spanish Patent and Trademark Office, 1975.
  11. N. Ergenç, N. S. Günay, and R. Demirdamar, “Synthesis and antidepressant evaluation of new 3-phenyl-5-sulfonamidoindole derivatives,” European Journal of Medicinal Chemistry, vol. 33, no. 2, pp. 143–148, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. R. E. Moore, C. Cheuk, X. Q. G. Yang et al., “Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyte Hapalosiphon fontinalis,” Journal of Organic Chemistry, vol. 52, no. 6, pp. 1036–1043, 1987. View at Google Scholar · View at Scopus
  13. V. K. Pandey, S. Tusi, R. Misra, and R. Shukla, “A chemical strategy for the construction of quinoline isoquinoline core units,” Indian Journal of Chemistry B, vol. 49, no. 1, pp. 107–111, 2010. View at Google Scholar · View at Scopus
  14. A. Mital, V. S. Negi, and U. Ramachandran, “Synthesis and antimycobacterial activities of certain trifluoromethyl-aminoquinoline derivatives,” Arkivoc, vol. 2006, no. 10, pp. 220–227, 2006. View at Google Scholar · View at Scopus
  15. R. U. Pokalwar, R. V. Hangarge, P. V. Maske, and M. S. Shingare, “Synthesis and antibacterial activities of α-hydroxyphosphonates and α-acetyloxyphosphonates derived from 2-chloroquinoline-3-carbaldehyde,” Arkivoc, vol. 2006, no. 11, pp. 196–204, 2006. View at Google Scholar · View at Scopus
  16. A. Srivastava, A. Chandra, and R. M. Singh, “Thiophene-fused quinoline analogues: facile synthesis of 3-amino-2-cyanothieno [2,3-b] quinolines from 2-chloro-3-cyanoquinolines,” Indian Journal of Chemistry B, vol. 44, no. 10, pp. 2077–2081, 2005. View at Google Scholar · View at Scopus
  17. P. K. Dubey, S. Srinivas Rao, and V. Aparna, “Synthesis of some novel 3-(2-chloro-3-quinolyl)-5-phenyl [1,3] thiazolo [2,3-c] [1,2,4] triazoles,” Heterocyclic Communications, vol. 9, no. 3, pp. 281–286, 2003. View at Google Scholar · View at Scopus
  18. P. R. Reddy, K. S. Rao, and B. Satyanarayana, “Synthesis and DNA cleavage properties of ternary Cu(II) complexes containing histamine and amino acids,” Tetrahedron Letters, vol. 47, no. 41, pp. 7311–7315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. P. Kourounakis, D. Galanakis, K. T. Siakitzis, E. A. Rekka, and P. N. Kourounakis, “Synthesis and pharmacological evaluation of novel derivatives of anti-inflammatory drugs with increased antioxidant and anti-inflammatory activities,” Drug Development Research, vol. 47, pp. 9–16, 1999. View at Google Scholar
  20. M. E. Buyukokuroglu, I. Gulcin, M. Oktay, and O. I. Kufrevioglu, “In vitroantioxidant properties of dantrolene sodium,” Pharmacological Research, vol. 44, no. 6, pp. 491–494, 2001. View at Publisher · View at Google Scholar
  21. M. E. Bravo-Gómez, J. C. García-Ramos, I. Gracia-Mora, and L. Ruiz-Azuara, “Antiproliferative activity and QSAR study of copper(II) mixed chelate [Cu(N-N)(acetylacetonato)]NO3 and [Cu(N-N)(glycinato)]NO3 complexes, (Casiopeínas),” Journal of Inorganic Biochemistry, vol. 103, no. 2, pp. 299–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. B. Bukhari, S. Memon, M. M. Tahir, and M. I. Bhanger, “Synthesis, characterization and investigation of antioxidant activity of cobalt-quercetin complex,” Journal of Molecular Structure, vol. 892, no. 1–3, pp. 39–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Jadegoud, O. B. Ijare, N. N. Mallikarjuna, S. D. Angadi, and B. H. M. Mruthyunjayaswamy, “Synthesis and antimicrobial activity of copper-, cobalt- and nickel(II) complexes with Schiff bases,” Journal of the Indian Chemical Society, vol. 79, no. 12, pp. 921–924, 2002. View at Google Scholar · View at Scopus
  24. B. H. M. Mruthyunjayaswamy, Y. Jadegoud, O. B. Ijare, S. G. Patil, and S. M. Kudari, “Synthesis, characterization and antimicrobial activity of macrocylic phenoxo-bridged di- and tetra-nuclear complexes from N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]succinoyl/sebacoyldicarboxamides,” Transition Metal Chemistry, vol. 30, no. 2, pp. 234–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. B. H. M. Mruthyunjayaswamy, O. B. Ijare, and Y. Jadegoud, “Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand,” Journal of the Brazilian Chemical Society, vol. 16, no. 4, pp. 783–789, 2005. View at Google Scholar · View at Scopus
  26. Y. Jadegoud, O. B. Ijare, B. S. Somashekar, G. A. N. Gowda, and B. H. M. Mruthyunjayaswamy, “Synthesis, characterization and antimicrobial activity of homodinuclear complexes derived from 2,6-bis[3′-methyl-2′-carboxamidyliminomethyl(6′,7′)benzindole]-4-methylphenol, an end-off compartmental ligand,” Journal of Coordination Chemistry, vol. 61, no. 4, pp. 508–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Rahaman, B. Hiremath, S. M. Basavarajaiah, B. H. M. Jayakumarswamy, and B. H. M. Mruthyunjayaswamy, “Synthetic, spectral, thermal and antimicrobial activity studies of some transition metal complexes derived from 2-hydroxy-methylbenzaldehyde N-(4′-phenyl-1′,3′-thiazol-2′-yl)semicarbazone,” Journal of the Indian Chemical Society, vol. 85, no. 4, pp. 381–386, 2008. View at Google Scholar · View at Scopus
  28. F. Rahaman, O. B. Ijare, Y. Jadegoud, and B. H. M. Mruthyunjayaswamy, “Phenoxo-bridged symmetrical homobinuclear complexes derived from an “end-off” compartmental ligand, 2,6-bis[5′-chloro-3′-phenyl-1H-indole-2′-carboxamidyliminomethyl]-4-methylphenol,” Journal of Coordination Chemistry, vol. 62, no. 9, pp. 1457–1467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longman ELBS, London, UK, 3rd edition, 1968.
  30. S. P. Hiremath, B. H. M. Mruthyunjayaswamy, and M. G. Purohit, “Synthesis of substituted 2-aminoindolees and 2-(2′-Phenyl-1′,3′,4′-oxadiazolyl)aminoindoles,” Indian Journal of Chemistry Section B, vol. 16, pp. 789–792, 1978. View at Google Scholar
  31. A. K. Sadana, Y. Mirza, K. R. Aneja, and O. Prakash, “Hypervalent iodine mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo[4,3-a] pyridines and 1-aryl/hetryl 5-methyl-1,2,4-triazolo[4,3-a]quinolines as antibacterial agents,” European Journal of Medicinal Chemistry, vol. 38, no. 5, pp. 533–536, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. T. A. Brown, Essential Molecular Biology: A Practical Approach, vol. 1, Oxford University Press, New York, NY, USA, 1990.
  33. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA, 2nd edition, 1989.
  34. R. P. Singh, K. N. Chidambara Murthy, and G. K. Jayaprakasha, “Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models,” Journal of Agricultural and Food Chemistry, vol. 50, no. 1, pp. 81–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, no. 1, pp. 81–122, 1971. View at Google Scholar · View at Scopus
  36. B. Srinivas, N. Arulsamy, and P. S. Zacharias, “Catalytic and magnetic properties of a new series of binuclear copper(II) complexes,” Polyhedron, vol. 10, no. 7, pp. 731–736, 1991. View at Google Scholar · View at Scopus
  37. C. Jayabalakrishnan and K. Natarajan, “Ruthenium(II) carbonyl complexes with tridentate Schiff bases and their antibacterial activity,” Transition Metal Chemistry, vol. 27, no. 1, pp. 75–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Chandra and L. K. Gupta, “EPR, mass, IR, electronic, and magnetic studies on copper(II) complexes of semicarbazones and thiosemicarbazones,” Spectrochimica Acta A, vol. 61, no. 1-2, pp. 269–275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. V. B. Rana, P. C. Jain, M. P. Swami, and A. K. Srivastava, “Thiosemicabazones as ligands-I. Spectrochemical studies on trivalent metal complexes of 1-phenyl-orthohydroxy-4-benzamido thiosemicarbazone,” Journal of Inorganic and Nuclear Chemistry, vol. 37, no. 7-8, pp. 1826–1828, 1975. View at Google Scholar · View at Scopus
  40. K. Abe, K. Matsufuji, M. Ohba, and H. Okawa, “Site specificity of metal ions in heterodinuclear complexes derived from an “end-off” compartmental ligand,” Inorganic Chemistry, vol. 41, no. 17, pp. 4461–4467, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. R. A. Rai, “Metal complexes of 5-(o)hydroxyphenyl-1,3,4-oxadiazole-2-thione,” Journal of Inorganic and Nuclear Chemistry, vol. 42, no. 3, pp. 450–453, 1980. View at Google Scholar · View at Scopus
  42. A. E. Underhill and D. E. Billing, “Calculations of the racah parameter B for nickel (II) and cobalt (II) compounds [11],” Nature, vol. 210, no. 5038, pp. 834–835, 1966. View at Publisher · View at Google Scholar · View at Scopus
  43. D. N. Satyanarayana, Electronic Absorption Spectroscopy and Related Techniques, University Press India Limited, New Delhi, India, 2001.
  44. K. Shivakumar, S. Shashidhar, P. Vithal Reddy, and M. B. Halli, “Synthesis, spectral characterization and biological activity of benzofuran Schiff bases with Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes,” Journal of Coordination Chemistry, vol. 61, no. 14, pp. 2274–2287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. D. P. Singh, R. Kumar, V. Malik, and P. Tyagi, “Synthesis and characterization of complexes of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with macrocycle 3,4,11,12-tetraoxo-1,2,5,6,9,10,13,14-octaaza-cyclohexadeca-6,8,14,16-tetraene and their biological screening,” Transition Metal Chemistry, vol. 32, no. 8, pp. 1051–1055, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Heimemann, Oxford, UK, 2nd edition, 1997.
  47. T. R. Rao and A. Prasad, “Synthesis and spectral studies on 3d metal complexes of mesogenic schiff base ligands. Part 1. Complexes of N-(4-butylphenyl) salicylaldimine,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 35, no. 4, pp. 299–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Balasubramanian and C. N. Krishnan, “Synthesis and characterization of five-coordinate macrocyclic complexes of nickel(II) and copper(II),” Polyhedron, vol. 5, no. 3, pp. 669–675, 1986. View at Google Scholar · View at Scopus
  49. B. T. Thaker, P. K. Tandel, A. S. Patel, C. J. Vyas, M. S. Jesani, and D. M. Patel, “Synthesis and mesomorphic characterization of Cu(II), Ni(II) and Pd(II) complexes with azomethine and chalcone as bridging group,” Indian Journal of Chemistry A, vol. 44, no. 2, pp. 265–270, 2005. View at Google Scholar · View at Scopus
  50. D. Kilveson, “Publications of Daniel Kivelson,” Journal of Physical Chemistry B, vol. 101, pp. 8631–8634, 1997. View at Google Scholar
  51. B. J. Hathaway and D. E. Billing, “The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion,” Coordination Chemistry Reviews, vol. 5, no. 2, pp. 143–207, 1970. View at Google Scholar · View at Scopus
  52. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, NY, USA, 2nd edition, 2001.
  53. S. A. Patil, V. H. Naik, A. D. Kulkarni, and P. S. Badami, “Spectroscopic, DNA cleavage and antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes of sulfur donor schiff bases,” Journal of Sulfur Chemistry, vol. 31, no. 2, pp. 109–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. A. K. Sharma and S. Chandra, “Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: synthesis, spectroscopic and antipathogenic studies,” Spectrochimica Acta A, vol. 78, no. 1, pp. 337–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. H. Chohan, M. Arif, M. A. Akhtar, and C. T. Supuran, “Metal-based antibacterial and antifungal agents: synthesis, characterization, and in vitro biological evaluation of Co(II), Cu(II), Ni(II), and Zn(II) complexes with amino acid-derived compounds,” Bioinorganic Chemistry and Applications, vol. 2006, Article ID 83131, 13 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. H. A. El-Wahab, M. M. Mashaly, A. A. Salman, B. A. El-Shetary, and A. A. Faheim, “Co(II), Ce(III) and UO2(VI) bis-salicylatothiosemicarbazide complexes: binary and ternary complexes, thermal studies and antimicrobial activity,” Spectrochimica Acta A, vol. 60, no. 12, pp. 2861–2873, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. K. R. K. Reddy, P. Suneetha, C. S. Karigar, N. H. Manjunath, and K. N. Mahendra, “Cobalt(II), Ni(II), Cu(II), Zn(II), CD(II), Hg(II), U02(VI) and th(IV) complexes from ONNN Schiff base ligand,” Journal of the Chilean Chemical Society, vol. 53, no. 4, pp. 1653–1657, 2008. View at Google Scholar · View at Scopus
  58. A. Sitlani, E. C. Long, A. M. Pyle, and J. K. Barton, “DNA photocleavage by phenanthrenequinone diimine complexes of rhodium(III): shape-selective recognition and reaction,” Journal of the American Chemical Society, vol. 114, no. 7, pp. 2303–2312, 1992. View at Google Scholar · View at Scopus