Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2013, Article ID 354982, 7 pages
http://dx.doi.org/10.1155/2013/354982
Research Article

Synthesis and Antioxidant Activities of Novel 5-Chlorocurcumin, Complemented by Semiempirical Calculations

1Department of Chemical & Process Engineering, Universiti of Kebangsaan Malaysia (UKM), 43000 Bangi, Selangor, Malaysia
2Applied Chemistry Division, Applied Science Department, University of Technology (UOT), Baghdad 10001, Iraq

Received 31 July 2013; Revised 19 August 2013; Accepted 20 August 2013

Academic Editor: Enrico Rizzarelli

Copyright © 2013 Ahmed A. Al-Amiery et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Anderson, M. S. Mitchell, and R. S. Mohan, “Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant,” Journal of Chemical Education, vol. 77, pp. 359–360, 2000. View at Google Scholar
  2. V. Lampe, “Synthesis von curcumin,” Chemische Berichte, vol. 51, article 1347, 1918. View at Google Scholar
  3. S. Sreejayan and M. N. A. Rao, “Nitric oxide scavenging by curcuminoids,” Journal of Pharmacy and Pharmacology, vol. 49, no. 1, pp. 105–107, 1997. View at Google Scholar · View at Scopus
  4. M. N. Kunchandy and A. Rao, “Oxygen radical scavenging activity of curcumin,” International Journal of Pharmaceutics, vol. 58, no. 3, pp. 237–240, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. S. V. Jovanovic, C. W. Boone, S. Steenken, M. Trinoga, and R. B. Kaskey, “How curcumin works preferentially with water soluble antioxidants,” Journal of the American Chemical Society, vol. 123, no. 13, pp. 3064–3068, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. G. J. Kelloff, J. A. Crowell, E. T. Hawk et al., “Clinical development plan: 9-cis-retinoic acid,” Journal of Cellular Biochemistry, vol. 26, pp. 158–167, 1996. View at Google Scholar · View at Scopus
  7. N. Noguchi, E. Komuro, E. Niki, and R. Willson, “Action if curcumin as antioxidant against lipid peroxidation,” Journal of Japan Oil Chemists' Society, vol. 43, pp. 1045–1051, 1994. View at Google Scholar
  8. R. Hong, W. H. Spohn, and M. Hung, “Curcumin inhibits tyrosine kinase activity of p185(neu) and also depletes p185(neu1),” Clinical Cancer Research, vol. 5, no. 7, pp. 1884–1891, 1999. View at Google Scholar · View at Scopus
  9. A. S. Jaiswal, B. P. Marlow, N. Gupta, and S. Narayan, “β-catenin-mediated transactivation and cell—cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells,” Oncogene, vol. 21, no. 55, pp. 8414–8427, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. F. T. Kolligs, M. T. Nieman, I. Winer et al., “ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with β-catenin defects and promotes neoplastic transformation,” Cancer Cell, vol. 1, no. 2, pp. 144–155, 2002. View at Google Scholar · View at Scopus
  11. M. V. Kumaraswamy and S. Satish, “Antioxidant and anti-lipoxygenase activity of Thespesia lampas Dalz & Gibs,” Advances in Biological Research, vol. 2, no. 3-4, pp. 56–59, 2008. View at Google Scholar
  12. N. Nenadis, O. Lazaridou, and M. Z. Tsimidou, “Use of reference compounds in antioxidant activity assessment,” Journal of Agricultural and Food Chemistry, vol. 55, no. 14, pp. 5452–5460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. F. Boyd and V. McGuire, “The possible role of lipid peroxidation in breast cancer risk,” Free Radical Biology and Medicine, vol. 10, no. 3-4, pp. 185–190, 1991. View at Google Scholar · View at Scopus
  14. R. L. Nelson, “Dietary iron and colorectal cancer risk,” Free Radical Biology and Medicine, vol. 12, no. 2, pp. 161–168, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Knekt, A. Reunanen, H. Takkunen, A. Aromaa, M. Heliovaara, and T. Hakulinen, “Body iron stores and risk of cancer,” International Journal of Cancer, vol. 56, no. 3, pp. 379–382, 1994. View at Google Scholar · View at Scopus
  16. G. S. Omenn, G. E. Goodman, M. D. Thornquist et al., “Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease,” The New England Journal of Medicine, vol. 334, no. 18, pp. 1150–1155, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Riemersma, D. A. Wood, C. C. A. Macintyre, R. A. Elton, K. F. Gey, and M. F. Oliver, “Risk of angina pectoris and plasma concentrations of vitamins A, C, and E and carotene,” The Lancet, vol. 337, no. 8732, pp. 1–5, 1991. View at Google Scholar · View at Scopus
  18. J. T. Salonen, K. Nyyssonen, H. Korpela, J. Tuomilehto, R. Seppanen, and R. Salonen, “High stored iron levels are associated with excess risk of myocardial infarction in Eastern Finnish men,” Circulation, vol. 86, no. 3, pp. 803–811, 1992. View at Google Scholar · View at Scopus
  19. D. A. Street, G. W. Comstock, R. M. Salkeld, W. Schüep, and M. J. Klag, “Serum antioxidants and myocardial infarction: are low levels of carotenoids and α-tocopherol risk factors for myocardial infarction?” Circulation, vol. 90, no. 3, pp. 1154–1161, 1994. View at Google Scholar · View at Scopus
  20. L. H. Kushi, A. R. Folsom, R. J. Prineas, P. J. Mink, Y. Wu, and R. M. Bostick, “Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women,” The New England Journal of Medicine, vol. 334, no. 18, pp. 1156–1162, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. O. M. Panasenko, T. V. Vol'Nova, O. A. Azizova, and Y. A. Vladimirov, “Free radical modification of lipoproteins and cholesterol accumulation in cells upon atherosclerosis,” Free Radical Biology and Medicine, vol. 10, no. 2, pp. 137–148, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Steinberg, “Antioxidants and atherosclerosis. A current assessment,” Circulation, vol. 84, no. 3, pp. 1420–1425, 1991. View at Google Scholar · View at Scopus
  23. D. R. Janero, “Therapeutic potential of vitamin E in the pathogenesis of spontaneous atherosclerosis,” Free Radical Biology and Medicine, vol. 11, no. 1, pp. 129–144, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. H. N. Hodis, W. J. Mack, L. LaBree et al., “Serial coronary angiographic evidence antioxidant vitamin intake reduces progression of coronary artery atherosclerosis,” Journal of the American Medical Association, vol. 273, no. 23, pp. 1849–1854, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Hensley, D. A. Butterfield, M. Mattson et al., “A model for β-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: implications of “molecular shrapnel” for Alzheimer's disease,” Proceedings of the Western Pharmacology Society, vol. 38, pp. 113–120, 1995. View at Google Scholar · View at Scopus
  26. K. Hensley, J. M. Carney, M. P. Mattson et al., “A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 8, pp. 3270–3274, 1994. View at Google Scholar · View at Scopus
  27. D. A. Butterfield, L. Martin, J. M. Carney, and K. Hensley, “Aβ(25–35) peptide displays H2O2-like reactivity towards aqueous FE2+, nitroxide spin probes, ant synaptosomal membrane proteins,” Life Sciences, vol. 58, no. 3, pp. 217–228, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. D. A. Butterfield, “β-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease,” Chemical Research in Toxicology, vol. 10, no. 5, pp. 495–506, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Sultana and D. A. Butterfield, “Redox proteomics studies of in vivo amyloid beta-peptide animal models of Alzheimer's disease: insight into the role of oxidative stress,” Proteomics, vol. 2, no. 5, pp. 685–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Rice-Evans, C. Rice-Evans, B. Halliwell, and G. G. Lunt, Free Radicals and Oxidative Stress: Environment, Drugs and Food Additives, Portland Press, London, UK, 1995.
  31. A. A. Al-Amiery, A. A. H. Kadhum, and A. B. Mohamad, “Antifungal and antioxidant activities of pyrrolidone thiosemicarbazone complexes,” Bioinorganic Chemistry and Applications, vol. 2012, Article ID 795812, 5 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. A. A. Al-Amiery, “Antimicrobial and antioxidant activities of new metal complexes derived from (E)-3-((5-phenyl-1,3,4-oxadiazol-2-ylimino)methyl)naphthalen-2-ol,” Medicinal Chemistry Research, vol. 21, pp. 3204–3213, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Chen, M. Wang, R. T. Rosen, and C. Ho, “2,2-diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thunb,” Journal of Agricultural and Food Chemistry, vol. 47, no. 6, pp. 2226–2228, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. A. A. Al-Amiery, Y. K. Al-Majedy, H. Abdulreazak, and H. Abood, “Synthesis, characterization, theoretical crystal structure, and antibacterial activities of some transition metal complexes of the thiosemicarbazone (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide,” Bioinorganic Chemistry and Applications, vol. 2011, Article ID 483101, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. A. H. Kadhum, A. B. Mohamad, A. A. Al-Amiery, and M. S. Takriff, “Antimicrobial and antioxidant activities of new metal complexes derived from 3-aminocoumarin,” Molecules, vol. 16, no. 8, pp. 6969–6984, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. A. Al-Amiery, A. Y. Musa, A. A. H. Kadhum, and A. B. Mohamad, “The use of umbelliferone in the synthesis of new heterocyclic compounds,” Molecules, vol. 16, no. 8, pp. 6833–6843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. A. H. Kadhum, A. A. Al-Amiery, M. Shikara, and A. Mohamad, “Synthesis, structure elucidation and DFT studies of new thiadiazoles,” International Journal of Physical Sciences, vol. 6, no. 29, pp. 6692–6697, 2012. View at Google Scholar · View at Scopus
  38. F. A. Hashem, “Investigation of free radical scavenging activity by ESR for coumarins isolated from Tecoma radicans,” Journal of Medical Sciences, vol. 7, no. 6, pp. 1027–1032, 2007. View at Google Scholar · View at Scopus
  39. G. Cao, E. Sofic, and R. L. Prior, “Antioxidant capacity of tea and common vegetables,” Journal of Agricultural and Food Chemistry, vol. 44, no. 11, pp. 3426–3431, 1996. View at Google Scholar · View at Scopus
  40. A. A. Al-Amiery, Y. K. Al-Majedy, H. H. Ibrahim, and A. A. Al-Tamimi, “Antioxidant, antimicrobial, and theoretical studies of the thiosemicarbazone derivative Schiff base 2-(2-imino-1- methylimidazolidin-4-ylidene) hydrazinecarbothioamide (IMHC),” Organic and Medicinal Chemistry Letters, vol. 2, article 4, 2012. View at Google Scholar
  41. J. R. Soares, T. C. P. Dinis, A. P. Cunha, and L. M. Almeida, “Antioxidant activities of some extracts of Thymus zygis,” Free Radical Research, vol. 26, no. 5, pp. 469–478, 1997. View at Google Scholar · View at Scopus
  42. P. Duh, Y. Tu, and G. Yen, “Antioxidant activity of water extract of Harng Jyur (Chyrsanthemum morifolium Ramat),” Lebensmittel-Wissenschaft & Technologie, vol. 32, no. 5, pp. 269–277, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Leopoldini, N. Russo, and M. Toscano, “The molecular basis of working mechanism of natural polyphenolic antioxidants,” Food Chemistry, vol. 125, no. 2, pp. 288–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Mikulski, M. Szeląg, M. Molski, and R. Górniak, “Quantum-chemical study on the antioxidation mechanisms of trans-resveratrol reactions with free radicals in the gas phase, water and ethanol environment,” Journal of Molecular Structure, vol. 951, no. 1–3, pp. 37–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Shang, Y. Qian, X. Liu et al., “Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution,” Journal of Organic Chemistry, vol. 74, no. 14, pp. 5025–5031, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Huang, O. U. Boxin, and R. L. Prior, “The chemistry behind antioxidant capacity assays,” Journal of Agricultural and Food Chemistry, vol. 53, no. 6, pp. 1841–1856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Ozgen, R. N. Reese, A. Z. Tulio, J. C. Scheerens, and A. R. Miller, “Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods,” Journal of Agricultural and Food Chemistry, vol. 54, no. 4, pp. 1151–1157, 2006. View at Publisher · View at Google Scholar · View at Scopus