Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2013, Article ID 360142, 9 pages
http://dx.doi.org/10.1155/2013/360142
Research Article

Stabilization of Submicron Calcium Oxalate Suspension by Chondroitin Sulfate C May Be an Efficient Protection from Stone Formation

1College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
2Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China

Received 5 July 2013; Revised 26 October 2013; Accepted 10 November 2013

Academic Editor: Imre Sovago

Copyright © 2013 Jun-Jun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Mechlin, C. Kalorin, J. Asplin, and M. White, “Splenda improves tolerance of oral potassium citrate supplementation for prevention of stone formation: results of a randomized double-blind trial,” Journal of Endourology, vol. 25, no. 9, pp. 1541–1545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. P. Lulich, C. A. Osborne, M. Carvalho, and Y. Nakagawa, “Effects of a urolith prevention diet on urine compositions of glycosaminoglycans, Tamm-Horsfall glycoprotein, and nephrocalcin in cats with calcium oxalate urolithiasis,” American Journal of Veterinary Research, vol. 73, no. 3, pp. 447–451, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Viswanathan, J. D. Rimer, A. M. Kolbach, M. D. Ward, J. G. Kleinman, and J. A. Wesson, “Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein,” Urological Research, vol. 39, no. 4, pp. 269–282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Chiangjong and V. Thongboonkerd, “A novel assay to evaluate promoting effects of proteins on calcium oxalate crystal invasion through extracellular matrix based on plasminogen/plasmin activity,” Talanta, vol. 101, pp. 240–245, 2012. View at Publisher · View at Google Scholar
  5. D. Webber, A. L. Rodgers, and E. D. Sturrock, “Glycosylation of prothrombin fragment 1 governs calcium oxalate crystal nucleation and aggregation, but not crystal growth,” Urological Research, vol. 35, no. 6, pp. 277–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-Y. He, S.-P. Deng, and J.-M. Ouyang, “Morphology, particle size distribution, aggregation, and crystal phase of nanocrystallites in the urine of healthy persons and lithogenic patients,” IEEE Transactions on Nanobioscience, vol. 9, no. 2, pp. 156–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. W. G. Robertson, “Kidney models of calcium oxalate stone formation,” Nephron Physiology, vol. 98, no. 2, pp. p21–p30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J.-Y. He, J.-M. Ouyang, and R.-E. Yang, “Agglomeration of urinary nanocrystallites: key factor to formation of urinary stones,” Materials Science and Engineering C, vol. 30, no. 6, pp. 878–885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. K. Saw, P. N. Rao, and J. P. Kavanagh, “A nidus, crystalluria and aggregation: key ingredients for stone enlargement,” Urological Research, vol. 36, no. 1, pp. 11–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. D. Roberts and M. I. Resnick, “Glycosaminoglycans content of stone matrix,” Journal of Urology, vol. 135, no. 5, pp. 1078–1083, 1986. View at Google Scholar · View at Scopus
  11. N. W. Poon and M. D. I. Gohel, “Urinary glycosaminoglycans and glycoproteins in a calcium oxalate crystallization system,” Carbohydrate Research, vol. 347, no. 1, pp. 64–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. I. D. Thorne and M. I. Resnick, “A methodology for the characterization of urinary glycosaminoglycans,” Journal of Urology, vol. 131, no. 5, pp. 995–999, 1984. View at Google Scholar · View at Scopus
  13. W. Bodenstab, J. Kaufman, and C. L. Parsons, “Inactivation of antiadherence effect of bladder surface glycosaminoglycan by a complete urinary carcinogen (N-methyl-N-nitrosourea),” Journal of Urology, vol. 129, no. 1, pp. 200–201, 1983. View at Google Scholar · View at Scopus
  14. T. Schwend, R. J. Deaton, Y. Zhang, B. Caterson, and G. W. Conrad, “Corneal sulfated glycosaminoglycans and their effects on trigeminal nerve growth cone behavior in vitro: roles for ECM in cornea innervation,” Investigative Ophthalmology & Visual Science, vol. 53, no. 13, pp. 8118–8137, 2012. View at Publisher · View at Google Scholar
  15. N. Volpi, A. Mucci, and L. Schenetti, “Stability studies of chondroitin sulfate,” Carbohydrate Research, vol. 315, no. 3-4, pp. 345–349, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Erkurt, Y. Ilker, Y. Budak, B. Özveren, L. Türkeri, and A. Akdaş, “Effect of urinary stone disease and extracorporeal shockwave lithotripsy on excretion of glycosaminoglycans,” Journal of Endourology, vol. 13, no. 8, pp. 553–557, 1999. View at Google Scholar · View at Scopus
  17. Y. M. Michelacci, R. Q. Glashan, and N. Schor, “Urinary excretion of glycosaminoglycans in normal and stone forming subjects,” Kidney International, vol. 36, no. 6, pp. 1022–1028, 1989. View at Google Scholar · View at Scopus
  18. S. Srinivasan, P. Kalaiselvi, R. Sakthivel, V. Pragasam, V. Muthu, and P. Varalakshmi, “Uric acid: an abettor or protector in calcium oxalate urolithiasis? biochemical study in stone formers,” Clinica Chimica Acta, vol. 353, no. 1-2, pp. 45–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Miyake, K. Yoshimura, M. Tsujihata et al., “Possible causes for the low prevalence of pediatric urolithiasis,” Urology, vol. 53, no. 6, pp. 1229–1234, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. S.-P. Deng and J.-M. Ouyang, “Effects of dipalmitoylphosphatidylcholine monolayers to the crystallization of calcium oxalate monohydrate from the solution containing chondroitin sulfate C,” Colloids and Surfaces A, vol. 257-258, pp. 47–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Masui, M. Suzuki, Y. Fujise, and N. Kanayama, “Calcium-induced changes in chondroitin sulfate chains of urinary trypsin inhibitor,” Biochimica et Biophysica Acta, vol. 1546, no. 2, pp. 261–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Peng, J.-M. Ouyang, X.-Q. Yao, and R.-E. Yang, “Interaction between sub-micron COD crystals and renal epithelial cells,” International Journal of Nanomedicine, vol. 7, no. 8, pp. 4727–4737, 2012. View at Publisher · View at Google Scholar
  23. J.-M. Ouyang, Z.-Y. Xia, G.-N. Zhang, and H.-Q. Chen, “Nanocrystallites in urine and their relationship with the formation of kidney stones,” Reviews in Inorganic Chemistry, vol. 32, no. 2-4, pp. 101–110, 2012. View at Publisher · View at Google Scholar
  24. S. Kulaksizoglu, M. Sofikerim, and C. Cevik, “Impact of various modifiers on calcium oxalate crystallization,” International Journal of Urology, vol. 14, no. 3, pp. 214–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Donnet, N. Jongen, J. Lemaitre, and P. Bowen, “New morphology of calcium oxalate trihydrate precipitated in a segmented flow tubular reactor,” Journal of Materials Science Letters, vol. 19, no. 9, pp. 749–750, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. S. C. Lee, H. W. Choi, H. J. Lee et al., “In-situ synthesis of reactive hydroxyapatite nano-crystals for a novel approach of surface grafting polymerization,” Journal of Materials Chemistry, vol. 17, no. 2, pp. 174–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. X.-J. Xu, Y.-M. Liu, H.-Y. Yu, and J.-M. Ouyang, “Thermodynamical transformation of calcium oxalate dihydrate and its stabilization by algal sulfated polysaccharide,” Chinese Journal of Inorganic Chemistry, vol. 23, no. 4, pp. 640–644, 2007. View at Google Scholar · View at Scopus
  28. M.-E. Laurence, P. Levillain, B. Lacour, and M. Daudon, “Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry,” Clinica Chimica Acta, vol. 298, no. 1-2, pp. 1–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Gul and P. Rez, “Models for protein binding to calcium oxalate surfaces,” Urological Research, vol. 35, no. 2, pp. 63–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. L. Ryall, M. C. Chauvet, and P. K. Grover, “Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals,” BJU International, vol. 96, no. 4, pp. 654–663, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Q. Ge and W. Y. Liang, “Adsorption of sodium dodecylbenzenesulfate (SDBS) on nanosized CaCO3 and dispersion of nanosized CaCO3 in water,” Journal of Dispersion Science and Technology, vol. 31, no. 8, pp. 1157–1162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M. Baumann, B. Affolter, U. Caprez, C. Clivaz, Z. Gluck, and R. Weber, “Stabilization of calcium oxalate suspension by urinary macromolecules, probably an efficient protection from stone formation,” Urologia Internationalis, vol. 79, no. 3, pp. 267–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C.-Y. Duan, Z.-Y. Xia, G.-N. Zhang, B.-S. Gui, J.-F. Xue, and J.-M. Ouyang, “Changes in urinary nanocrystallites in calcium oxalate stone formers before and after potassium citrate intake,” International Journal of Nanomedicine, vol. 8, no. 1, pp. 909–918, 2013. View at Publisher · View at Google Scholar
  34. M. Tsujihata, C. Momohara, I. Yoshioka, A. Tsujimura, N. Nonomura, and A. Okuyama, “Atorvastatin inhibits renal crystal retention in a rat stone forming model,” Journal of Urology, vol. 180, no. 5, pp. 2212–2217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Fong-Ngern, P. Peerapen, S. Sinchaikul, S.-T. Chen, and V. Thongboonkerd, “Large-scale identification of calcium oxalate monohydrate crystal-binding proteins on apical membrane of distal renal tubular epithelial cells,” Journal of Proteome Research, vol. 10, no. 10, pp. 4463–4477, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. K. G. Christmas, L. B. Gower, S. R. Khan, and H. El-Shall, “Aggregation and dispersion characteristics of calcium oxalate monohydrate: effect of urinary species,” Journal of Colloid and Interface Science, vol. 256, no. 1, pp. 168–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. J.-M. Ouyang, S.-P. Deng, J.-P. Zhong, B. Tieke, and S.-H. Yu, “Crystallization of calcium oxalate monohydrate at dipalmitoylphosphatidylcholine monolayers in the presence of chondroitin sulfate A,” Journal of Crystal Growth, vol. 270, no. 3-4, pp. 646–654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-M. Ouyang, M. Wang, P. Lu, and J. Tan, “Degradation of sulfated polysaccharide extracted from algal Laminaria japonica and its modulation on calcium oxalate crystallization,” Materials Science and Engineering C, vol. 30, no. 7, pp. 1022–1029, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Hesse, H. Wuzel, and W. Vahlensieck, “Significance of glycosaminoglycans for the formation of calcium oxalate stones,” American Journal of Kidney Diseases, vol. 17, no. 4, pp. 414–419, 1991. View at Google Scholar · View at Scopus
  40. J.-M. Ouyang , “Chemical basis in the investigation of calcium oxalate stones,” Chemistry, vol. 65, no. 5, pp. 326–332, 2002. View at Google Scholar
  41. B. Fellstom, U. Backman, B. Danielson, and B. Wikström, “Treatment of renal calcium stone disease with the synthetic glycosaminoglycan pentosan polysulphate,” World Journal of Urology, vol. 12, no. 1, pp. 52–54, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. S.-S. Zhang, G.-D. Liu, and J.-Y. He, “The experimental result and clinical observation of Sterculia lychnophora Hance inhibiting the formation of calcium oxalate crystals,” Chinese Journal of Urology, vol. 17, pp. 51–53, 1996. View at Google Scholar
  43. X.-L. Kang, J.-Y. He, Y.-R. Chen, and G.-D. Liu, “The effect of wuIing powder on inhibition of calcium oxalate crystallization and urinary GAGs excretion,” Chinese Journal of Urology, vol. 12, no. 3, pp. 227–230, 1991. View at Google Scholar