Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2013 (2013), Article ID 362513, 13 pages
http://dx.doi.org/10.1155/2013/362513
Research Article

Synthesis, Characterization, and Bioactivity of Schiff Bases and Their , , , and Complexes Derived from Chloroacetophenone Isomers with S-Benzyldithiocarbazate and the X-Ray Crystal Structure of S-Benzyl-β-N-(4-chlorophenyl)methylenedithiocarbazate

1School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia (UKM), Selangor, 43600 Bangi, Malaysia
2Department of Chemistry, Universiti Putra Malaysia, 43400 Selangor, Malaysia
3School of Pharmacy, University of Nottingham, Malaysia Campus, 43500 Selangor, Malaysia

Received 21 August 2013; Accepted 23 September 2013

Academic Editor: Spyros Perlepes

Copyright © 2013 Mohammed Khaled bin Break et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Tarafder, T. J. Khoo, A. Crouse, M. Ali, B. Yamin, and H. Fun, “Coordination chemistry and bioactivity of some metal complexes containing two isomeric bidentate NS schiff bases derived from S-benzyldithiocarbazate and the X-ray crystal structures of S-benzyl-β-N-(5-methyl-2-furylmethylene)dithiocarbazate and bis[S-benzyl-β-N-(2-furylmethylketone)dithiocarbazato]cadmium(II),” Polyhedron, vol. 21, no. 27-28, pp. 2691–2698, 2002. View at Google Scholar · View at Scopus
  2. F. How, A. Crouse, M. Tahir, and D. Watkin, “Synthesis and structure determination of s,ś-(Naphthalen-2-ylmethyl sulfanyl (1-p-tolyl-ethylidene) hydrazine,” Journal of Chemical Crystallography, vol. 39, no. 12, pp. 894–897, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. T. J. Khoo, A. Cowley, D. Watkin, A. Crouse, and M. Tarafder, “Benzyl N-[1-(furan-2-yl)ethylidene]hydrazine-carbodithioate,” Acta Crystallographica E, vol. 61, no. 8, pp. o2441–o2443, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Hossain, M. Alam, M. Ali, M. Nazimuddin, E. Smith, and C. Hynes, “The synthesis, characterization and bioactivities of some Copper(II) complexes of the 2-acetylpyridine schiff bases of s-methyl-and s-benzyldithiocarbazate, and the X-ray crystal structure of the nitrato(s-benzyl-β-n-(2-acetylpyridyl) methylenedithiocarbazato)Copper(II) complex,” Polyhedron, vol. 15, no. 5-6, pp. 973–980, 1996. View at Google Scholar · View at Scopus
  5. M. Tarafder, M. Ali, D. Wee, K. Azahari, K. Silong, and K. Crouse, “Complexes of a tridentate ONS schiff base. Synthesis and biological properties,” Transition Metal Chemistry, vol. 25, no. 4, pp. 456–460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Sheldrick, SAINT V4 Software Reference Manual, Siemens Analytical X-Ray Systems, Madison, Wis, USA, 1996.
  7. G. Sheldrick, SADABS Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, 1996.
  8. G. Sheldrick, SHELXTL V5.1 Software Reference Manual, Bruker AXS, Madison, Wis, USA, 1997.
  9. S. Westrip, “publCIF: software for editing, validating and formatting crystallographic information files,” Journal of Applied Crystallography, vol. 43, pp. 920–925. View at Publisher · View at Google Scholar
  10. J. E. Kelmanson, A. K. Jäger, and J. van Staden, “Zulu medicinal plants with antibacterial activity,” Journal of Ethnopharmacology, vol. 69, no. 3, pp. 241–246, 2000. View at Google Scholar
  11. M. Tarafder, T. J. Khoo, A. Crouse, M. Ali, M. Yamin, and H. Fun, “Coordination chemistry and bioactivity of Ni2+, Cu2+, Cd2+ and Zn2+ complexes containing bidentate schiff bases derived from S-benzyldithiocarbazate and the X-ray crystal structure of bis[S-benzyl-β-N-(5-methyl-2-furylmethylene)dithiocarbazato]cadmium(II),” Polyhedron, vol. 21, no. 25-26, pp. 2547–2554, 2002. View at Google Scholar · View at Scopus
  12. N. Raman, V. Muthuraj, S. Ravichandran, and A. Kulandaisamy, “Synthesis, characterisation and electrochemical behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone and p-anisidine and their antimicrobial activity,” Proceedings of the Indian Academy of Sciences, vol. 115, no. 3, pp. 161–167, 2003. View at Google Scholar · View at Scopus
  13. M. Tarafder, A. Kasbollah, A. Crouse, M. Ali, M. Yamin, and H. Fun, “Synthesis and characterization of Zn(II) and Cd(II) complexes of S-benzyl-β-N-(2-pyridyl)methylenedithiocarbazate (HNNS): bioactivity of the HNNS schiff base and its Zn(II), Cu(II) and Cd(II) complexes and the X-ray structure of the [Zn(NNS)2] complex,” Polyhedron, vol. 20, no. 18, pp. 2363–2370, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. T. S. Porto, N. A. Furtado, V. C. Heleno et al., “Antimicrobial ent-pimarane diterpenes from Viguiera arenaria against gram-positive bacteria,” Fitoterapia, vol. 80, no. 7, pp. 432–436, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Mihajilov-Krstev, D. Radnovic, D. Kitic, Z. Stojanovic-Radic, and B. Zlatkovic, “Antimicrobial activity of Satureja hortensis L. essential oil against pathogenic microbial strains,” Archives of Biological Science, vol. 62, no. 1, pp. 159–166, 2010. View at Publisher · View at Google Scholar
  16. K. Frederick, “Activities of twenty-two antibacterial substances against nine species of bacteria,” Journal of Bacteriology, vol. 54, no. 6, pp. 761–766, 1947. View at Google Scholar
  17. A. Schumacher, P. Steinke, J. A. Bohnert, M. Akova, D. Jonas, and W. V. Kern, “Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 2, pp. 344–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Ay, K. Ay, M. Oskay, N. Yenil, and S. Kuzu, “Synthesis, characterization and antimicrobial properties of thiosemicarbazone derived from α-chloralose,” in Proceedings of the 14th International Electronic Conference on Organic Synthetic Chemistry, pp. 1–11, Barcelona, Spain, November 2010.
  19. R. M. Darwish and T. A. Aburjai, “Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli,” BMC Complementary and Alternative Medicine, vol. 10, article 9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Jevtovica, D. Cvetkovic, and D. Vidovic, “Synthesis, X-ray characterization and antimicrobial activity of iron(II) and cobalt(III) complexes with the Schiff base derived from pyridoxal and semicarbazide or S-methylisothiosemicarbazide,” Journal of the Iranian Chemical Society, vol. 8, no. 3, pp. 727–733, 2011. View at Google Scholar
  21. E. V. Costa, M. L. Pinheiro, A. Barison et al., “Alkaloids from the bark of Guatteria hispida and their evaluation as antioxidant and antimicrobial agents,” Journal of Natural Products, vol. 73, no. 6, pp. 1180–1183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Sibanda and I. Okoh, “In vitro evaluation of the interactions between acetone extracts of Garcinia kola seeds and some antibiotics,” African Journal of Biotechnology, vol. 7, no. 11, pp. 1672–1678, 2008. View at Google Scholar
  23. A. L. Davis, K. L. Hulme, G. T. Wilson, and T. J. McCord, “In vitro antimicrobial activity of some cyclic hydroxamic acids and related lactams,” Antimicrobial Agents and Chemotherapy, vol. 13, no. 3, pp. 542–544, 1978. View at Google Scholar · View at Scopus