Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2013, Article ID 959764, 8 pages
http://dx.doi.org/10.1155/2013/959764
Research Article

Uptake and Distribution of Cd in Sweet Maize Grown on Contaminated Soils: A Field-Scale Study

1School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
2The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China

Received 8 August 2013; Accepted 29 October 2013

Academic Editor: Imre Sovago

Copyright © 2013 Wending Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Fässler, B. H. Robinson, S. K. Gupta, and R. Schulin, “Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions,” Nutrient Cycling in Agroecosystems, vol. 87, no. 3, pp. 339–352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. G. Palmgren, S. Clemens, L. E. Williams et al., “Zinc biofortification of cereals: problems and solutions,” Trends in Plant Science, vol. 13, no. 9, pp. 464–473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Ingwersen and T. Streck, “A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling,” Journal of Environmental Quality, vol. 34, no. 3, pp. 1026–1035, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Zhou, Chelate-Induced Phytoextraction of Soils Contaminated with Heavy Metals and Its Environmental Risk, South China University of Technology, Guangzhou, China, 2006.
  5. Z. Y. Hseu, S. H. Jien, S. H. Wang, and H. W. Deng, “Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach,” Journal of Environmental Management, vol. 117, pp. 58–64, 2013. View at Google Scholar
  6. M. W. H. Evangelou, M. Ebel, and A. Schaeffer, “Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents,” Chemosphere, vol. 68, no. 6, pp. 989–1003, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K.-H. Hsiao, P.-H. Kao, and Z.-Y. Hseu, “Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction,” Journal of Hazardous Materials, vol. 148, no. 1-2, pp. 366–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Leštan, C.-L. Luo, and X.-D. Li, “The use of chelating agents in the remediation of metal-contaminated soils: a review,” Environmental Pollution, vol. 153, no. 1, pp. 3–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Tandy, R. Schulin, and B. Nowack, “Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration,” Environmental Science & Technology, vol. 40, no. 8, pp. 2753–2758, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Mühlbachová, “Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS,” Ecological Engineering, vol. 37, no. 7, pp. 1064–1071, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Luo, Z. Shen, L. Lou, and X. Li, “EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds,” Environmental Pollution, vol. 144, no. 3, pp. 862–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. F. Quartacci, B. Irtelli, A. J. M. Baker, and F. Navari-Izzo, “The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata,” Chemosphere, vol. 68, no. 10, pp. 1920–1928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. M. Zhou, Z. Dang, N. C. Chen, S. G. Xu, and Z. Y. Xie, “Influence of NTA on accumulation and chemical form of copper and zinc in maize,” Journal of Agro-Environment Science, vol. 26, pp. 453–457, 2007. View at Google Scholar
  14. A. Cao, A. Carucci, T. Lai, P. La Colla, and E. Tamburini, “Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria,” European Journal of Soil Biology, vol. 43, no. 4, pp. 200–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Grčman, D. Vodnik, Š. Velikonja-Bolta, and D. Leštan, “Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction,” Journal of Environmental Quality, vol. 32, no. 2, pp. 500–506, 2003. View at Google Scholar · View at Scopus
  16. J. C. Lan, S. R. Zhang, H. C. Lin et al., “Efficiency of biodegradable EDDS NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils,” Chemosphere, vol. 91, pp. 1362–1367, 2013. View at Google Scholar
  17. L. Zhang, L. Zhang, and F. Song, “Cadmium uptake and distribution by different maize genotypes in maturing stage,” Communications in Soil Science and Plant Analysis, vol. 39, no. 9-10, pp. 1517–1531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Huang, Y. Chen, and S. Tao, “Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation change in rhizosphere,” Chinese Journal of Applied Ecology, vol. 13, no. 7, pp. 859–862, 2002. View at Google Scholar · View at Scopus
  19. Y. Cao, R. Huang, J. Li, T. Zhao, W. Guo, and G. Wang, “Cadmium absorption characteristics of Zea mays under combined stress of lead and cadmium,” Chinese Journal of Ecology, vol. 25, no. 11, pp. 1425–1427, 2006. View at Google Scholar · View at Scopus
  20. S. Y. Feng, Z. M. Qi, G. H. Huang, and G. Cha, “Field experimental study on the residue of heavy metal in summer corn,” Journal of Irrigation and Drainage, vol. 22, pp. 9–13, 2003. View at Google Scholar
  21. J. Li, Y. L. Yi, L. L. Li, D. G. Zhang, J. Li, and Y. Jiao, “Distribution of heavy metal (CdPbCuZn) in different organs of maize,” Chinese Agricultural Science Bulletion, vol. 22, pp. 244–247, 2006. View at Google Scholar
  22. Q. R. Wang, X. M. Liu, Y. T. Dong, and Y. S. Cui, “Contamination and characters of vegetation polluted by heavy metals in typical industrial regions subjected to sewage as irrigation,” Agro-Environmental Protection, vol. 21, no. 2, pp. 115–118, 149, 2002. View at Google Scholar
  23. M. L. Brenner, “The role of hormones in photosynthate partitioning and seed filling,” in Plant Hormones and Their Role in Plant Growth and Development, P. J. Davies, Ed., pp. 474–493, Kluwer Academic Publishers, Dodrecht, The Netherlands, 1995. View at Google Scholar
  24. R. J. Jones and M. L. Brenner, “Distribution of abscisic acid in maize kernel during grain filling,” Plant Physiology, no. 83, pp. 905–909, 1987. View at Google Scholar
  25. Health Ministry, C., “Maximum levels of contaminants in food,” In 2005; Vol. GB 2762-2005.
  26. A. Durbak, H. Yao, and P. McSteen, “Hormone signaling in plant development,” Current Opinion in Plant Biology, vol. 15, no. 1, pp. 92–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Kayser, K. Wenger, A. Keller et al., “Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments,” Environmental Science & Technology, vol. 34, no. 9, pp. 1778–1783, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. M. F. Quartacci, A. Argilla, A. J. M. Baker, and F. Navari-Izzo, “Phytoextraction of metals from a multiply contaminated soil by Indian mustard,” Chemosphere, vol. 63, no. 6, pp. 918–925, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Wenger, S. K. Gupta, G. Furrer, and R. Schulin, “Zinc extraction potential of two common crop plants, Nicotiana tabacum and Zea mays,” Plant and Soil, vol. 242, no. 2, pp. 217–225, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Angelova, R. Ivanova, and K. Ivanov, “Heavy metal accumulation and distribution in oil crops,” Communications in Soil Science and Plant Analysis, vol. 35, no. 17-18, pp. 2551–2566, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Amon, B. Amon, V. Kryvoruchko et al., “Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations,” Bioresource Technology, vol. 98, no. 17, pp. 3204–3212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. L. A. Licht and J. G. Isebrands, “Linking phytoremediated pollutant removal to biomass economic opportunities,” Biomass & Bioenergy, vol. 28, no. 2, pp. 203–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. K. K. Meher, A. M. Panchwagh, S. Rangrass, and K. G. Gollakota, “Biomethanation of tobacco waste,” Environmental Pollution, vol. 90, no. 2, pp. 199–202, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. J. A. Langdale, B. Lane, M. Freeling, and T. Nelson, “Cell lineage analysis of maize bundle sheath and mesophyll cells,” Developmental Biology, vol. 133, no. 1, pp. 128–139, 1989. View at Google Scholar · View at Scopus
  35. M. Intawongse and J. R. Dean, “Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract,” Food Additives and Contaminants, vol. 23, no. 1, pp. 36–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Bertin and D. Averbeck, “Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review),” Biochimie, vol. 88, no. 11, pp. 1549–1559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Redjala, I. Zelko, T. Sterckeman, V. Legué, and A. Lux, “Relationship between root structure and root cadmium uptake in maize,” Environmental and Experimental Botany, vol. 71, no. 2, pp. 241–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Marschner, Mineral Nutrition of Higher Plants, Academic Presser, Hartcourt Brace & Company, London, UK, 2nd edition, 1995.