Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2014, Article ID 215392, 12 pages
http://dx.doi.org/10.1155/2014/215392
Research Article

Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu(II), Co(II), and Ni(II) Schiff Base Complexes of 1-Phenylindoline-2,3-dione with Isonicotinohydrazide

1Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
2Department of Microbiology, Periyar University, Salem, Tamil Nadu 636011, India

Received 5 October 2013; Revised 30 November 2013; Accepted 30 November 2013; Published 12 March 2014

Academic Editor: Ian Butler

Copyright © 2014 Ramadoss Gomathi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Karthikeyan, D. J. Prasad, B. Poojary, K. Subrahmanya Bhat, B. S. Holla, and N. S. Kumari, “Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety,” Bioorganic and Medicinal Chemistry, vol. 14, no. 22, pp. 7482–7489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Dandia, V. Sehgal, and P. Singh, “Synthesis of fluorine containing 2-aryl-3-pyrazolyl/pyranyl/isoxazolinyl-indole derivative as antifungal and antibacterial agents,” Indian Journal of Chemistry B, vol. 32, pp. 1288–1291, 1993. View at Google Scholar
  3. K. Singh, M. S. Barwa, and P. Tyagi, “Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone,” European Journal of Medicinal Chemistry, vol. 41, no. 1, pp. 147–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. O. M. Walsh, M. J. Meegan, R. M. Prendergast, and T. Al Nakib, “Synthesis of 3-acetoxyazetidin-2-ones and 3-hydroxyazetidin-2-ones with antifungal and antibacterial activity,” European Journal of Medicinal Chemistry, vol. 31, no. 12, pp. 989–1000, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Raman, K. Pothiraj, and T. Baskaran, “DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal(II) complexes with tridentate heterocyclic Schiff base derived from 2′-methylacetoacetanilide,” Journal of Molecular Structure, vol. 1000, no. 1–3, pp. 135–144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. K. R. Surati and B. T. Thaker, “Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic β-diketone with aromatic and aliphatic diamine,” Spectrochimica Acta A, vol. 75, no. 1, pp. 235–242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Ali, A. H. Mirza, H. J. H. A. Bakar, and P. V. Bernhardt, “Preparation and structural characterization of nickel(II), cobalt(II), zinc(II) and tin(IV) complexes of the isatin Schiff bases of S-methyl and S-benzyldithiocarbazates,” Polyhedron, vol. 30, no. 4, pp. 556–564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Cerchiaro, G. A. Micke, M. F. M. Tavares, and A. M. da Costa Ferreira, “Kinetic studies of carbohydrate oxidation catalyzed by novel isatin-Schiff base copper(II) complexes,” Journal of Molecular Catalysis A, vol. 221, no. 1-2, pp. 29–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. H. Chohan, H. Pervez, A. Rauf, K. M. Khan, and C. T. Supuran, “Isatin-derived antibacterial and antifungal compounds and their transition metal complexes,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 19, no. 5, pp. 417–423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Arjunan, I. Saravanan, P. Ravindran, and S. Mohan, “Structural, vibrational and DFT studies on 2-chloro-1H-isoindole-1,3(2H)-dione and 2-methyl-1H-isoindole-1,3(2H)-dione,” Spectrochimica Acta A, vol. 74, no. 3, pp. 642–649, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Pawar, D. Lokwani, S. Bhandari et al., “Design of potential reverse transcriptase inhibitor containing Isatin nucleus using molecular modeling studies,” Bioorganic and Medicinal Chemistry, vol. 18, no. 9, pp. 3198–3211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Metcalfe and J. A. Thomas, “Kinetically inert transition metal complexes that reversibly bind to DNA,” Chemical Society Reviews, vol. 32, no. 4, pp. 215–224, 2003. View at Google Scholar · View at Scopus
  13. K. E. Erkkila, D. T. Odom, and J. K. Barton, “Recognition and reaction of metallointercalators with DNA,” Chemical Reviews, vol. 99, no. 9, pp. 2777–2795, 1999. View at Google Scholar · View at Scopus
  14. V. Uma, V. G. Vaidyanathan, and B. U. Nair, “Synthesis, structure, and DNA binding studies of copper(II) complexes of terpyridine derivatives,” Bulletin of the Chemical Society of Japan, vol. 78, no. 5, pp. 845–850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Szczepanik, J. Ciesiołka, J. Wrzesiński, J. Skała, and M. Jezowska-Bojczuk, “Interaction of aminoglycosides and their copper(II) complexes with nucleic acids: implication to the toxicity of these drugs,” Dalton Transactions, no. 8, pp. 1488–1494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Q.-L. Li, J. Huang, Q. Wang et al., “Monometallic complexes of 1,4,7,10-tetraazacyclododecane containing an imidazolium side: synthesis, characterization, and their interaction with plasmid DNA,” Bioorganic and Medicinal Chemistry, vol. 14, no. 12, pp. 4151–4157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. K. Dubey, S. Srinivas Rao, and V. Aparna, “Synthesis of some novel 3-(2-chloro-3-quinolyl)-5-phenyl [1,3] thiazolo [2,3-c] [1,2,4] triazoles,” Heterocyclic Communications, vol. 9, no. 3, pp. 281–286, 2003. View at Google Scholar · View at Scopus
  18. R. Gomathi, A. Ramu, and A. Murugan, “Synthesis, spectral characterization of N-benzyl isatin schiff base Cu(II), Co(II) and Ni(II) complexes and their effect on cancer cell lines,,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 2, no. 10, pp. 5156–5166, 2013. View at Google Scholar
  19. R. Gomathi and A. Ramu, “Synthesis, DNA binding, cleavage, antibacterial and cytotoxic activity of Novel Schiff base Co(II) Complexes of substituted isatin,” International Journal of Advanced Research, vol. 1, no. 8, pp. 556–567, 2013. View at Google Scholar
  20. R. Hettich and H.-J. Schneider, “Cobalt(III) polyamine complexes as catalysts for the hydrolysis of phosphate esters and of DNA. A measurable 10 million-fold rate increase,” Journal of the American Chemical Society, vol. 119, no. 24, pp. 5638–5647, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-C. Cheng, Y.-N. Kuo, K.-S. Chuang, C.-F. Luo, and W. J. Wang, “A new CoII complex as a bulge-specific probe for DNA,” Angewandte Chemie (International Edition), vol. 38, no. 9, pp. 1255–1257, 1999. View at Google Scholar · View at Scopus
  22. R. Gomathi and A. Ramu, “Synthesis, characterization of novel Cu(II) complexes of isatin derivatives as potential cytotoxicity, DNA binding, cleavage and antibacterial agents,” International Journal of Innovative Research in Science Engineering and Technology, vol. 2, no. 9, pp. 4852–4486, 2013. View at Google Scholar
  23. A. Wolfe, G. H. Shimer Jr., and T. Meehan, “Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA,” Biochemistry, vol. 26, no. 20, pp. 6392–6396, 1987. View at Google Scholar · View at Scopus
  24. F. A. Beckford, M. Shaloski Jr., G. Leblanc et al., “Microwave synthesis of mixed ligand diimine-thiosemicarbazone complexes of ruthenium(II): biophysical reactivity and cytotoxicity,” Dalton Transactions, no. 48, pp. 10757–10764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. P. Hiremath, B. H. M. Mruthyunjayaswamy, and M. G. Purohit, “Synthesis of substituted 2-aminoindolees and 2-(2′-Phenyl-1′,3′,4′-oxadiazolyl)aminoindoles,” Indian Journal of Chemistry B, vol. 16, pp. 789–792, 1978. View at Google Scholar
  26. A. D. Kulkarni, S. A. Patil, and P. S. Badami, “Electrochemical properties of some transition metal complexes: synthesis, characterization and In-vitro antimicrobial studies of Co(II), Ni(II), Cu(II), Mn(II) and Fe(III) complexes,” International Journal of Electrochemical Science, vol. 4, no. 5, pp. 717–729, 2009. View at Google Scholar · View at Scopus
  27. D.-D. Li, J.-L. Tian, W. Gu, X. Liu, and S.-P. Yan, “Synthesis, X-ray crystal structures, DNA binding and nuclease activities of two novel 1,2,4-triazole-based CuII complexes,” European Journal of Inorganic Chemistry, no. 33, pp. 5036–5045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. P. Fitzsimons and J. K. Barton, “Design of a synthetic nuclease: DNA hydrolysis by a zinc-binding peptide tethered to a rhodium intercalator,” Journal of the American Chemical Society, vol. 119, no. 14, pp. 3379–3380, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Arjmand, S. Parveen, M. Afzal, L. Toupet, and T. Ben Hadda, “Molecular drug design, synthesis and crystal structure determination of CuII-SnIV heterobimetallic core: DNA binding and cleavage studies,” European Journal of Medicinal Chemistry, vol. 49, pp. 141–150, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Guerriero, S. Tamburini, and P. A. Vigato, “From mononuclear to polynuclear macrocyclic or macroacyclic complexes,” Coordination Chemistry Reviews, vol. 139, pp. 17–243, 1995. View at Google Scholar · View at Scopus
  31. S. Budagumpi, G. S. Kurdekar, G. S. Hegde, N. H. Bevinahalli, and V. K. Revankar, “Versatility in the coordination behavior of a hexatopic compartmental Schiff-base ligand in the architecture of binuclear transition metal(II) complexes,” Journal of Coordination Chemistry, vol. 63, no. 8, pp. 1430–1439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Shashidhar, K. Shivakumar, P. V. Reddy, and M. B. Halli, “Synthesis and spectroscopic characterization of metal complexes with naphthofuran-2-carbohydrazide Schiff's base,” Journal of Coordination Chemistry, vol. 60, no. 3, pp. 243–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Liu, H. Wang, F. Gao, D. Niu, and Z. Lu, “Self-assembly of copper(II) complexes with substituted aroylhydrazones and monodentate N-heterocycles: synthesis, structure and properties,” Journal of Coordination Chemistry, vol. 60, no. 24, pp. 2671–2678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. P. Singh, R. Kumar, V. Malik, and P. Tyagi, “Synthesis and characterization of complexes of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with macrocycle 3,4,11,12-tetraoxo-1,2,5,6,9,10,13,14- octaaza-cyclohexadeca-6,8,14,16-tetraene and their biological screening,” Transition Metal Chemistry, vol. 32, no. 8, pp. 1051–1055, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. V. C. da Silveira, H. Benezra, J. S. Luz, R. C. Georg, C. C. Oliveira, and A. M. D. C. Ferreira, “Binding of oxindole-Schiff base copper(II) complexes to DNA and its modulation by the ligand,” Journal of Inorganic Biochemistry, vol. 105, no. 12, pp. 1692–1703, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Ni, D. Lin, and S. Kokot, “Synchronous fluorescence, UV-visible spectrophotometric, and voltammetric studies of the competitive interaction of bis(1,10-phenanthroline)copper(II) complex and neutral red with DNA,” Analytical Biochemistry, vol. 352, no. 2, pp. 231–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. B. W. Rossister and J. F. Hamilton, Physical Method of Chemisty, John Wiley & Sons, New York, NY, USA, 2nd edition, 1985.
  38. F.-Y. Wu, F.-Y. Xie, Y.-M. Wu, and J.-I. Hong, “Interaction of a new fluorescent probe with DNA and its use in determination of DNA,” Journal of Fluorescence, vol. 18, no. 1, pp. 175–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. P. B. Dervan, R. M. Doss, and M. A. Marques, “Programmable DNA binding oligomers for control of transcription,” Current Medicinal Chemistry, vol. 5, no. 4, pp. 373–387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Kashanian and J. Ezzati Nazhad Dolatabadi, “In vitro study of calf thymus DNA interaction with butylated hydroxyanisole,” DNA and Cell Biology, vol. 28, no. 10, pp. 535–540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Kashanian, M. M. Khodaei, H. Roshanfekr, N. Shahabadi, A. Rezvani, and G. Mansouri, “DNA binding, DNA cleavage, and cytotoxicity studies of two new copper (II) complexes,” DNA and Cell Biology, vol. 30, no. 5, pp. 287–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Kashanian and S. H. Zeidali, “DNA binding studies of tartrazine food additive,” DNA and Cell Biology, vol. 30, no. 7, pp. 499–505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Kashanian, Z. Shariati, H. Roshanfekr, and S. Ghobadi, “DNA binding studies of 3, 5, 6-trichloro-2-pyridinol pesticide metabolite,” DNA Cell Biology, vol. 31, pp. 1314–1348, 2012. View at Google Scholar
  44. R. Bera, B. K. Sahoo, K. S. Ghosh, and S. Dasgupta, “Studies on the interaction of isoxazolcurcumin with calf thymus DNA,” International Journal of Biological Macromolecules, vol. 42, no. 1, pp. 14–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Liu, J. Yang, and X. Wu, “Study of the interaction between nucleic acid and oxytetracycline-Eu3+ and its analytical application,” Journal of Luminescence, vol. 96, no. 2–4, pp. 201–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. M. J. Waring, “Complex formation between ethidium bromide and nucleic acids,” Journal of Molecular Biology, vol. 13, no. 1, pp. 269–282, 1965. View at Google Scholar · View at Scopus
  47. V. G. Vaidyanathan and B. U. Nair, “Photooxidation of DNA by a cobalt(II) tridentate complex,” Journal of Inorganic Biochemistry, vol. 94, no. 1-2, pp. 121–126, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. Z.-H. Xu, F.-J. Chen, P.-X. Xi, X.-H. Liu, and Z.-Z. Zeng, “Synthesis, characterization, and DNA-binding properties of the cobalt(II) and nickel(II) complexes with salicylaldehyde 2-phenylquinoline-4-carboylhydrazone,” Journal of Photochemistry and Photobiology A, vol. 196, no. 1, pp. 77–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Milne, P. Nicotera, S. Orrenius, and M. J. Burkitt, “Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione,” Archives of Biochemistry and Biophysics, vol. 304, no. 1, pp. 102–109, 1993. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Macías, M. V. Villa, B. Gómez et al., “DNA interaction of new copper(II) complexes with new sulfoamides as ligands,” Journal of Inorganic Biochemistry, vol. 101, pp. 441–451, 2007. View at Google Scholar
  51. P. Uma Maheswari and M. Palaniandavar, “DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines—effect of hydrogen-bonding on DNA-binding affinity,” Journal of Inorganic Biochemistry, vol. 98, no. 2, pp. 219–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. Z. Zhang, Y. Yang, F. Liu, X. Qian, and Q. Xu, “Study on the interaction between 4-(2-diethylamino-ethylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile and DNA by molecular spectra,” International Journal of Biological Macromolecules, vol. 38, no. 1, pp. 59–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Hirohama, Y. Kuranuki, E. Ebina et al., “Copper(II) complexes of 1,10-phenanthroline-derived ligands: studies on DNA binding properties and nuclease activity,” Journal of Inorganic Biochemistry, vol. 99, no. 5, pp. 1205–1219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. K. Patra, S. Dhar, M. Nethaji, and A. R. Chakravarty, “Metal-assisted red light-induced DNA cleavage by ternary L-methionine copper(II) complexes of planar heterocyclic bases,” Dalton Transactions, no. 5, pp. 896–902, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Gao, Y. Sun, Q. Liu, and L. Duan, “An anticancer metallobenzylmalonate: crystal structure and anticancer activity of a palladium complex of 2,2′-bipyridine and benzylmalonate,” Journal of Coordination Chemistry, vol. 59, no. 11, pp. 1295–1300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Ferrari, M. C. Fornasiero, and A. M. Isetta, “MTT colorimetric assay for testing macrophage cytotoxic activity in vitro,” Journal of Immunological Methods, vol. 131, no. 2, pp. 165–172, 1990. View at Publisher · View at Google Scholar · View at Scopus
  57. N. A. Rey, A. Neves, P. P. Silva et al., “A synthetic dinuclear copper(II) hydrolase and its potential as antitumoral: cytotoxicity, cellular uptake, and DNA cleavage,” Journal of Inorganic Biochemistry, vol. 103, no. 10, pp. 1323–1330, 2009. View at Publisher · View at Google Scholar · View at Scopus