Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2016, Article ID 5360361, 10 pages
http://dx.doi.org/10.1155/2016/5360361
Research Article

Synthesis of Polydopamine Functionalized Reduced Graphene Oxide-Palladium Nanocomposite for Laccase Based Biosensor

1Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
2State Key Laboratory of Food Science and Technology, Wuxi 214122, China
3Key Laboratory of Textile Fabric, Anhui Polytechnic University, Wuhu, Anhui 241000, China

Received 22 April 2016; Accepted 14 June 2016

Academic Editor: Luigi Casella

Copyright © 2016 Da-Wei Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Singh, D. V. S. Jain, and M. L. Singla, “Sol-gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor,” Sensors & Actuators B: Chemical, vol. 182, pp. 161–169, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Ensafi, M. Amini, and B. Rezaei, “Assessment of genotoxicity of catecholics using impedimetric DNA-biosensor,” Biosensors and Bioelectronics, vol. 53, pp. 43–50, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Barek, H. Ebertová, V. Mejstřík, and J. Zima, “Determination of 2-nitrophenol, 4-nitrophenol, 2-methoxy-5-nitrophenol, and 2,4-dinitrophenol by differential pulse voltammetry and adsorptive stripping voltammetry,” Collection of Czechoslovak Chemical Communications, vol. 59, no. 8, pp. 1761–1771, 1994. View at Publisher · View at Google Scholar
  4. R. E. Clement, G. A. Eiceman, and C. J. Koester, “Environmental-analysis,” Analytical Chemistry, vol. 67, no. 12, pp. R221–R255, 1995. View at Publisher · View at Google Scholar
  5. X.-H. Zhou, L.-H. Liu, X. Bai, and H.-C. Shi, “A reduced graphene oxide based biosensor for high-sensitive detection of phenols in water samples,” Sensors and Actuators B: Chemical, vol. 181, pp. 661–667, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Shimomura, T. Itoh, T. Sumiya, T.-A. Hanaoka, F. Mizukami, and M. Ono, “Amperometric detection of phenolic compounds with enzyme immobilized in mesoporous silica prepared by electrophoretic deposition,” Sensors and Actuators B: Chemical, vol. 153, no. 2, pp. 361–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Brondani, B. de Souza, B. S. Souza, A. Neves, and I. C. Vieira, “PEI-coated gold nanoparticles decorated with laccase: a new platform for direct electrochemistry of enzymes and biosensing applications,” Biosensors and Bioelectronics, vol. 42, no. 1, pp. 242–247, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Chen, D. Li, G. Li et al., “Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor,” Applied Surface Science, vol. 328, pp. 444–452, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. P. M. Ajayan, “Nanotubes from Carbon,” Chemical Reviews, vol. 99, no. 7, pp. 1787–1800, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Trifonov, R. Tel-Vered, M. Fadeev, A. Cecconello, and I. Willner, “Metal nanoparticle-loaded mesoporous carbon nanoparticles: electrical contacting of redox proteins and electrochemical sensing applications,” Electroanalysis, vol. 27, no. 9, pp. 2150–2157, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. S. V. Morozov, A. K. Geim, I. V. Crigorieva et al., “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar
  12. C.-L. Sun, J.-S. Su, S.-Y. Lai, and Y.-J. Lu, “Size effects of Pt nanoparticle/graphene composite materials on the electrochemical sensing of hydrogen peroxide,” Journal of Nanomaterials, vol. 2015, Article ID 861061, 7 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Ensafi, M. Sohrabi, M. Jafari-Asl, and B. Rezaei, “Selective and sensitive furazolidone biosensor based on DNA-modified TiO2-reduced graphene oxide,” Applied Surface Science, vol. 356, pp. 301–307, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. L.-M. Lu, H.-B. Li, F. Qu, X.-B. Zhang, G.-L. Shen, and R.-Q. Yu, “In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors,” Biosensors and Bioelectronics, vol. 26, no. 8, pp. 3500–3504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Nandini, S. Nalini, R. Manjunatha, S. Shanmugam, J. S. Melo, and G. S. Suresh, “Electrochemical biosensor for the selective determination of hydrogen peroxide based on the co-deposition of palladium, horseradish peroxidase on functionalized-graphene modified graphite electrode as composite,” Journal of Electroanalytical Chemistry, vol. 689, pp. 233–242, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Zeng, J.-S. Cheng, X.-F. Liu, H.-T. Bai, and J.-H. Jiang, “Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor,” Biosensors and Bioelectronics, vol. 26, no. 8, pp. 3456–3463, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Li, C. Qin, C. Chen, Y. Fu, M. Ma, and Q. Xie, “Highly sensitive phenolic biosensor based on magnetic polydopamine-laccase- Fe3O4 bionanocomposite,” Sensors and Actuators B: Chemical, vol. 168, pp. 46–53, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Li, L. Luo, Z. Pang et al., “Novel phenolic biosensor based on a magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite,” ACS Applied Materials and Interfaces, vol. 6, no. 7, pp. 5144–5151, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Fu, P. Li, Q. Xie et al., “One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose,” Advanced Functional Materials, vol. 19, no. 11, pp. 1784–1791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Gan, L. Ling, Z. He, H. Lei, and Y. Liu, “In-situ assembly of biocompatible core-shell hierarchical nanostructures sensitized immunosensor for microcystin-LR detection,” Biosensors and Bioelectronics, vol. 78, pp. 381–389, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. S. H. Liu, Z. Y. Zhang, S. W. Zhou, L.-P. Jiang, and J.-J. Zhu, “An electrochemical-TUNEL method for sensitive detection of apoptotic cells,” Analyst, vol. 141, no. 2, pp. 567–569, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. W. S. Hummers Jr. and R. E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, no. 6, p. 1339, 1958. View at Publisher · View at Google Scholar
  23. Y. Li, X. Fan, J. Qi et al., “Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction,” Nano Research, vol. 3, no. 6, pp. 429–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Fan, W. Peng, L. Yang et al., “Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation,” Advanced Materials, vol. 20, no. 23, pp. 4490–4493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Karousis, G.-E. Tsotsou, F. Evangelista, P. Rudolf, N. Ragoussis, and N. Tagmatarchis, “Carbon nanotubes decorated with palladium nanoparticles: synthesis, characterization, and catalytic activity,” Journal of Physical Chemistry C, vol. 112, no. 35, pp. 13463–13469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. K. Basiruddin and S. K. Swain, “Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing,” Materials Science and Engineering: C, vol. 58, pp. 103–109, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Wojtoniszak, X. Chen, R. J. Kalenczuk et al., “Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide,” Colloids and Surfaces B: Biointerfaces, vol. 89, no. 1, pp. 79–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. K. F. Babu, B. Rajagopalan, J. S. Chung, and W. M. Choi, “Facile synthesis of graphene/N-doped carbon nanowire composites as an effective electrocatalyst for the oxygen reduction reaction,” International Journal of Hydrogen Energy, vol. 40, no. 21, pp. 6827–6834, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Na, L. Zhang, H. Qiu et al., “A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol,” Journal of Power Sources, vol. 288, pp. 160–167, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” Journal of Chemical Physics, vol. 53, no. 3, pp. 1126–1130, 1970. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Cheng, R. Yang, L. Zhang et al., “Restoration of graphene from graphene oxide by defect repair,” Carbon, vol. 50, no. 7, pp. 2581–2587, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Yang, A. Velamakanni, G. Bozoklu et al., “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy,” Carbon, vol. 47, no. 1, pp. 145–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'Homme, I. A. Aksay, and R. Car, “Raman spectra of graphite oxide and functionalized graphene sheets,” Nano Letters, vol. 8, no. 1, pp. 36–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. An, F. Zuo, Y. P. Wu et al., “Fast synthesis of dopamine-coated Fe3O4 nanoparticles through ligand-exchange method,” Chinese Chemical Letters, vol. 23, no. 9, pp. 1099–1102, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. I. M. Dugandžić, D. J. Jovanović, L. T. Mančić et al., “Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine,” Materials Chemistry and Physics, vol. 143, no. 1, pp. 233–239, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Mazur, A. Krywko-Cendrowska, P. Krysiński, and J. Rogalski, “Encapsulation of laccase in a conducting polymer matrix: a simple route towards polypyrrole microcontainers,” Synthetic Metals, vol. 159, no. 17-18, pp. 1731–1738, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Wang, J. Tang, Z. Zhang, Y. Gao, and G. Chen, “Laccase on Black Pearl 2000 modified glassy carbon electrode: characterization of direct electron transfer and biological sensing properties for pyrocatechol,” Electrochimica Acta, vol. 70, pp. 112–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Zhou, L. Tang, G. Zeng et al., “Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation,” Biosensors and Bioelectronics, vol. 61, pp. 519–525, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Xu, P. Lu, Y. Zhou, Z. Zhao, and M. Guo, “Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA,” Materials Science and Engineering C, vol. 29, no. 7, pp. 2160–2164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Xu, M. Guo, P. Lu, and R. Wang, “Development of amperometric laccase biosensor through immobilizing enzyme in copper-containing ordered mesoporous carbon (Cu-OMC)/chitosan matrix,” Materials Science and Engineering: C, vol. 30, no. 5, pp. 722–729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Shimomura, T. Itoh, T. Sumiya, T.-A. Hanaoka, F. Mizukami, and M. Ono, “Amperometric detection of phenolic compounds with enzyme immobilized in mesoporous silica prepared by electrophoretic deposition,” Sensors and Actuators, B: Chemical, vol. 153, no. 2, pp. 361–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Fu, H. Qiao, D. Li, L. Luo, K. Chen, and Q. Wei, “Laccase biosensor based on electrospun copper/carbon composite nanofibers for catechol detection,” Sensors, vol. 14, no. 2, pp. 3543–3556, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Y. Wang, M. M. Xi, M. M. Guo et al., “An electrochemically aminated glassy carbon electrode for simultaneous determination of hydroquinone and catechol,” Analyst, vol. 141, no. 3, pp. 1077–1082, 2016. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Campanhã Vicentini, L. L. C. Garcia, L. C. S. Figueiredo-Filho, B. C. Janegitz, and O. Fatibello-Filho, “A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water,” Enzyme and Microbial Technology, vol. 84, pp. 17–23, 2016. View at Publisher · View at Google Scholar · View at Scopus