Table of Contents Author Guidelines Submit a Manuscript
Bioinorganic Chemistry and Applications
Volume 2017 (2017), Article ID 1064918, 6 pages
https://doi.org/10.1155/2017/1064918
Research Article

Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

1Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
2Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
3Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
4Departamento Físico Matemático, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
5Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico

Correspondence should be addressed to M. E. Compeán Jasso; moc.liamg@naepmoc.ahtram

Received 15 November 2016; Accepted 10 January 2017; Published 13 February 2017

Academic Editor: Claudio Pettinari

Copyright © 2017 I. DeAlba-Montero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji, “Strain specificity in antimicrobial activity of silver and copper nanoparticles,” Acta Biomaterialia, vol. 4, no. 3, pp. 707–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Cervantes and F. Gutierrez-Corona, “Copper resistance mechanisms in bacteria and fungi,” FEMS Microbiology Reviews, vol. 14, no. 2, pp. 121–137, 1994. View at Google Scholar · View at Scopus
  3. S. Silver, “Bacterial silver resistance: molecular biology and uses and misuses of silver compounds,” FEMS Microbiology Reviews, vol. 27, no. 2-3, pp. 341–353, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Ren, D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker, “Characterisation of copper oxide nanoparticles for antimicrobial applications,” International Journal of Antimicrobial Agents, vol. 33, no. 6, pp. 587–590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Hajipour, K. M. Fromm, A. Akbar Ashkarran et al., “Antibacterial properties of nanoparticles,” Trends in Biotechnology, vol. 30, no. 10, pp. 499–511, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Agarwala, B. Choudhury, and R. N. S. Yadav, “Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens,” Indian Journal of Microbiology, vol. 54, no. 3, pp. 365–368, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Y. Pelgrift and A. J. Friedman, “Nanotechnology as a therapeutic tool to combat microbial resistance,” Advanced Drug Delivery Reviews, vol. 65, no. 13-14, pp. 1803–1815, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Chakraborty, R. K. Sarkar, A. K. Chatterjee, U. Manju, A. P. Chattopadhyay, and T. Basu, “A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: unraveling the biological and chemical modes of action,” Biochimica et Biophysica Acta, vol. 1850, no. 4, pp. 845–856, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Sámano-Valencia, G. A. Martinez-Castanon, F. Martínez-Gutiérrez et al., “Characterization and biocompatibility of chitosan gels with silver and gold nanoparticles,” Journal of Nanomaterials, vol. 2014, Article ID 543419, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Larimer, M. S. Islam, A. Ojha, and I. Nettleship, “Mutation of environmental mycobacteria to resist silver nanoparticles also confers resistance to a common antibiotic,” BioMetals, vol. 27, no. 4, pp. 695–702, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Jeong, K. Woo, D. Kim et al., “Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing,” Advanced Functional Materials, vol. 18, no. 5, pp. 679–686, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Chen and J. M. Sommers, “Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution,” Journal of Physical Chemistry B, vol. 105, no. 37, pp. 8816–8820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, and M.-P. Pileni, “Collections of copper nanocrystals characterized by different sizes and shapes: optical response of these nanoobjects,” Journal of Physical Chemistry B, vol. 108, no. 35, pp. 13242–13248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. J. Lucena, “El empleo de complejantes y quelatos en la fertilización de micronutrientes,” Revista Ceres, vol. 56, no. 4, pp. 527–535, 2009. View at Google Scholar
  16. T. Ganz, “Defensins and other antimicrobial peptides: a historical perspective and an update,” Combinatorial Chemistry & High Throughput Screening, vol. 8, no. 3, pp. 209–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. F. D. Silva, C. A. Rezende, D. C. P. Rossi et al., “Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus,” The Journal of Biological Chemistry, vol. 284, no. 50, pp. 34735–34746, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Basolo and R. Johnson, Química de los Compuestos de Coordinación, Reverté, Bellvei, España, 1980.
  19. M. J. Guajardo-Pacheco, J. E. Morales-Sánchez, J. González-Hernández, and F. Ruiz, “Synthesis of copper nanoparticles using soybeans as a chelant agent,” Materials Letters, vol. 64, no. 12, pp. 1361–1364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. A. Wayne, “CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement,” CLSI Document M100-S25, Clinical and Laboratory Standards Institute, 2015.
  21. X. Wang, Y. C. Wu, S. P. Xia, Y. Gao, and C. X. Li, “Inquiring into the method of counting live germ with MTT,” Journal of Luzhou Medical College, vol. 25, pp. 291–293, 2002. View at Google Scholar
  22. P. De Vreese, N. R. Brooks, K. Van Hecke et al., “Speciation of copper(II) complexes in an ionic liquid based on choline chloride and in choline chloride/water mixtures,” Inorganic Chemistry, vol. 51, no. 9, pp. 4972–4981, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Cuevas, I. Viera, M. H. Torre, E. Kremer, S. B. Etcheverry, and E. J. Baran, “Infrared spectra of the Copper(II) complexes of amino acids with hydrophobic residues,” Acta Farmaceutica Bonaerense, vol. 17, no. 3, pp. 213–218, 1998. View at Google Scholar · View at Scopus
  24. K. A. Kuiken and C. M. Lyman, “Essential amino acid composition of soy bean meals prepared from twenty strains of soy beans,” The Journal of Biological Chemistry, vol. 177, pp. 29–36, 1948. View at Google Scholar
  25. C. H. Van Etten, J. E. Hubbard, J. M. Mallan, A. K. Smith, and C. W. Blessin, “Amino acid composition of soybean protein fractions,” Agricultural and Food Chemistry, vol. 7, no. 2, pp. 129–131, 1959. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Thiel, L. Pakstis, S. Buzby et al., “Antibacterial properties of silver-doped titania,” Small, vol. 3, no. 5, pp. 799–803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. L. Warnes and C. W. Keevil, “Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact,” Applied and Environmental Microbiology, vol. 77, no. 17, pp. 6049–6059, 2011. View at Publisher · View at Google Scholar · View at Scopus