Table of Contents Author Guidelines Submit a Manuscript
Bone Marrow Research
Volume 2012 (2012), Article ID 136087, 13 pages
http://dx.doi.org/10.1155/2012/136087
Research Article

Human Leukocyte Antigen Profiles of Latin American Populations: Differential Admixture and Its Potential Impact on Hematopoietic Stem Cell Transplantation

1Clinical Research Group, The Anthony Nolan Research Institute, Royal Free & University College Medical School, London NW3 2QG, UK
2University College London Cancer Institute, London WC1E 6DD, UK
3Centro de Investigaciones en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
4Haemato-Oncology Research Unit, Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK

Received 6 August 2012; Accepted 12 October 2012

Academic Editor: Colette Raffoux

Copyright © 2012 Esteban Arrieta-Bolaños et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Ljungman, M. Bregni, M. Brune et al., “Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe 2009,” Bone Marrow Transplantation, vol. 45, no. 2, pp. 219–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Anasetti, “What are the most important donor and recipient factors affecting the outcome of related and unrelated allogeneic transplantation?” Best Practice and Research: Clinical Haematology, vol. 21, no. 4, pp. 691–697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Dickinson, “Risk assessment in haematopoietic stem cell transplantation: pre-transplant patient and donor factors: non-HLA genetics,” Best Practice and Research: Clinical Haematology, vol. 20, no. 2, pp. 189–207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. J. Lee, J. Klein, M. Haagenson et al., “High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation,” Blood, vol. 110, no. 13, pp. 4576–4583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. B. E. Shaw, R. Arguello, C. A. Garcia-Sepulveda, and J. A. Madrigal, “The impact of HLA genotyping on survival following unrelated donor haematopoietic stem cell transplantation: review,” British Journal of Haematology, vol. 150, no. 3, pp. 251–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Dickinson, “Non-HLA genetics and predicting outcome in HSCT,” International Journal of Immunogenetics, vol. 35, no. 4-5, pp. 375–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Jagasia, M. Arora, M. E. Flowers et al., “Risk factors for acute GVHD and survival after hematopoietic cell transplantation,” Blood, vol. 119, no. 1, pp. 296–307, 2012. View at Publisher · View at Google Scholar
  8. C. Baron, R. Somogyi, L. D. Greller et al., “Prediction of Graft-versus-host disease in humans by donor gene-expression profiling,” PLoS Medicine, vol. 4, no. 1, article e23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Dickinson and E. Holler, “Polymorphisms of cytokine and innate immunity genes and GVHD,” Best Practice and Research: Clinical Haematology, vol. 21, no. 2, pp. 149–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Oh, F. R. Loberiza, M. J. Zhang et al., “Comparison of graft-versus-host-disease and survival after HLA-identical sibling bone marrow transplantation in ethnic populations,” Blood, vol. 105, no. 4, pp. 1408–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Morishima, S. Ogawa, A. Matsubara et al., “Impact of highly conserved HLA haplotype on acute graft-versus-host disease,” Blood, vol. 115, no. 23, pp. 4664–4670, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Ray, D. Wegmann, N. J. R. Fagundes, S. Wang, A. Ruiz-Linares, and L. Excoffier, “A statistical evaluation of models for the initial settlement of the american continent emphasizes the importance of gene flow with Asia,” Molecular Biology and Evolution, vol. 27, no. 2, pp. 337–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Brucato, O. Cassar, L. Tonasso et al., “The imprint of the Slave Trade in an African American population: mitochondrial DNA, Y chromosome and HTLV-1 analysis in the Noir Marron of French Guiana,” BMC Evolutionary Biology, vol. 10, article 314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. L. Catelli, V. Alvarez-Iglesias, A. Gomez-Carballa et al., “The impact of modern migrations on present-day multi-ethnic Argentina as recorded on the mitochondrial DNA genome,” BMC Genetics, vol. 12, article 77, 2011. View at Google Scholar
  15. F. F. Gonzalez-Galarza, S. Christmas, D. Middleton, and A. R. Jones, “Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations,” Nucleic Acids Research, vol. 39, no. 1, pp. D913–D919, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Cerna, M. Falco, H. Friedman et al., “Differences in HLA class II alleles of isolated South American Indian populations from Brazil and Argentina,” Human Immunology, vol. 37, no. 4, pp. 213–220, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Fernández-Viña, A. M. Lázaro, C. Y. Marcos et al., “Dissimilar evolution of B-locus versus A-locus and class II loci of the HLA region in South American Indian tribes,” Tissue Antigens, vol. 50, no. 3, pp. 233–250, 1997. View at Google Scholar · View at Scopus
  18. A. Arnaiz-Villena, N. Siles, J. Moscoso et al., “Origin of Aymaras from Bolivia and their relationship with other Amerindians according to HLA genes,” Tissue Antigens, vol. 65, no. 4, pp. 379–390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Martinez-Laso, N. Siles, J. Moscoso et al., “Origin of Bolivian Quechua Amerindians: their relationship with other American Indians and Asians according to HLA genes,” European Journal of Medical Genetics, vol. 49, no. 2, pp. 169–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Lázaro, M. E. Moraes, C. Y. Marcos, J. R. Moraes, M. A. Fernández-Viña, and P. Stastny, “Evolution of HLA-class I compared to HLA-class II polymorphism in Terena, a South-American Indian tribe,” Human Immunology, vol. 60, no. 11, pp. 1138–1149, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Gómez-Casado, J. Martínez-Laso, J. Moscoso et al., “Origin of Mayans according to HLA genes and the uniqueness of Amerindians,” Tissue Antigens, vol. 61, no. 6, pp. 425–436, 2003. View at Google Scholar · View at Scopus
  22. J. E. García-Ortiz, L. Sandoval-Ramírez, H. Rangel-Villalobos et al., “High-resolution molecular characterization of the HLA class I and class II in the Tarahumara Amerindian population,” Tissue Antigens, vol. 68, no. 2, pp. 135–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Loeza, G. Vargas-Alarcón, F. Andrade et al., “Distribution of class I and class III MHC antigens in the Tarasco Amerindians,” Human Immunology, vol. 63, no. 2, pp. 143–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Hollenbach, G. Thomson, K. Cao et al., “HLA diversity, differentiation, and haplotype evolution in mesoamerican natives,” Human Immunology, vol. 62, no. 4, pp. 378–390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Vargas-Alarcón, G. Hernández-Pacheco, J. Zuñiga et al., “Distribution of HLA-B alleles in Mexican Amerindian populations,” Immunogenetics, vol. 54, no. 11, pp. 756–760, 2003. View at Google Scholar · View at Scopus
  26. O. Benitez, M. Busson, D. Charron, and P. Loiseau, “HLA polymorphism in a Guarani-Indian population from Paraguay and its usefulness for the Hispano-Indian admixture study in Paraguay,” International Journal of Immunogenetics, vol. 38, no. 1, pp. 7–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Arnaiz-Villena, V. Gonzalez-Alcos, J. I. Serrano-Vela et al., “HLA genes in Uros from Titikaka Lake, Peru: origin and relationship with other Amerindians and worldwide populations,” International Journal of Immunogenetics, vol. 36, no. 3, pp. 159–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Mack, Y. Tsai, A. Sanchez-Mazas, and H. A. Erlich, “Anthropology/ human genetic diversity population reports,” in Proceedings of the 13th International Histocompatibility Workshop and Conference on Immunobiology of the Human Genetic Diversity Population Reports, IHWG Press, Seattle, Wash, USA, 2007.
  29. Z. Layrisse, Y. Guedez, E. Domínguez et al., “Extended HLA haplotypes in a Carib Amerindian population: the Yucpa of the Perija Range,” Human Immunology, vol. 62, no. 9, pp. 992–1000, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. Leffell, M. D. Fallin, H. A. Erlich et al., “HLA antigens, alleles and haplotypes among the Yup'ik Alaska natives: report of the ASHI Minority Workshops, part II,” Human Immunology, vol. 63, no. 7, pp. 614–625, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Williams, Y. F. Chen, R. Endres et al., “Molecular variation at the HLA-A, B, C, DRB1, DQA1, and DQB1 loci in full heritage American Indians in Arizona: private haplotypes and their evolution,” Tissue Antigens, vol. 74, no. 6, pp. 520–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. S. Leffell, M. D. Fallin, W. H. Hildebrand, J. W. Cavett, B. A. Iglehart, and A. A. Zachary, “HLA alleles and haplotypes among the lakota sioux: report of the ASHI minority workshops, part III,” Human Immunology, vol. 65, no. 1, pp. 78–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Middleton, F. Williams, A. Meenagh et al., “Analysis of the distribution of HLA-A alleles in populations from five continents,” Human Immunology, vol. 61, no. 10, pp. 1048–1052, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Williams, A. Meenagh, C. Darke et al., “Analysis of the distribution of HLA-B alleles in populations from five continents,” Human Immunology, vol. 62, no. 6, pp. 645–650, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. T. M. Ruiz, S. M. C. M. Da Costa, F. Ribas, P. R. Luz, S. S. Lima, and M. Da Graça Bicalho, “Human leukocyte antigen allelic groups and haplotypes in a Brazilian sample of volunteer donors for bone marrow transplant in Curitiba, Paraná, Brazil,” Transplantation Proceedings, vol. 37, no. 5, pp. 2293–2296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Nigam, E. Dellalibera, L. Maurício-da-Silva, E. A. Donadi, and R. S. Silva, “Polymorphism of HLA class I genes in the Brazilian population from the Northeastern State of Pernambuco corroborates anthropological evidence of its origin,” Tissue Antigens, vol. 64, no. 2, pp. 204–209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Arrieta-Bolaños, H. Maldonado-Torres, O. Dimitriu et al., “HLA-A, -B, -C, -DQB1, and -DRB1,3,4,5 allele and haplotype frequencies in the Costa Rica Central Valley Population and its relationship to worldwide populations,” Human Immunology, vol. 72, no. 1, pp. 80–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. R. Arias-Murillo, M. A. Castro-Jiménez, M. F. Ríos-Espinosa, J. J. López-Rivera, S. J. Echeverry-Coral, and O. Martínez-Nieto, “Analysis of HLA-A, HLA-B, HLA-DRB1 allelic, genotypic, and haplotypic frequencies in Colombian population,” Colombia Medica, vol. 41, no. 4, pp. 336–343, 2010. View at Google Scholar · View at Scopus
  39. L. M. Rodríguez, M. C. Giraldo, N. García et al., “Human leucocyte antigen gene (HLA-A, HLA-B, HLA-DRB1) frequencies in deceased organ donor,” Biomedica, vol. 27, no. 4, pp. 537–547, 2007. View at Google Scholar · View at Scopus
  40. B. Sierra, R. Alegre, A. B. Pérez et al., “HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue virus infection,” Human Immunology, vol. 68, no. 6, pp. 531–540, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Parga-Lozano, D. Rey-Medrano, P. Gomez-Prieto et al., “HLA genes in Amerindian immigrants to Madrid (Spain): epidemiology and a virtual transplantation waiting list: amerindians in Madrid (Spain),” Molecular Biology Reports, vol. 38, no. 4, pp. 2263–2271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. A. Leal, F. Mendoza-Carrera, F. Rivas, S. Rodriguez-Reynoso, and E. Portilla-De Buen, “HLA-A and HLA-B allele frequencies in a mestizo population from Guadalajara, Mexico, determined by sequence-based typing,” Tissue Antigens, vol. 66, no. 6, pp. 666–673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Barquera, J. Zúñiga, R. Hernández-Díaz et al., “HLA class I and class II haplotypes in admixed families from several regions of Mexico,” Molecular Immunology, vol. 45, no. 4, pp. 1171–1178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. O. Benitez, C. Dehay, C. Raffoux, and J. Colombani, “Métissage hispano-indien en Amérique du Sud: essai de compréhension grâce à l'analyse sanguine du système HLA au Paraguay,” Hématologie, vol. 1, no. 5, pp. 437–439, 1995. View at Google Scholar
  45. R. De Pablo, Y. Beraún, A. Nieto et al., “HLA class I and class II allele distribution in the Peruvian population,” Tissue Antigens, vol. 56, no. 6, pp. 507–514, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Maiers, L. Gragert, and W. Klitz, “High-resolution HLA alleles and haplotypes in the United States population,” Human Immunology, vol. 68, no. 9, pp. 779–788, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. M. S. Leffell, W. S. Cherikh, G. Land, and A. A. Zachary, “Improved definition of human leukocyte antigen frequencies among minorities and applicability to estimates of transplant compatibility,” Transplantation, vol. 83, no. 7, pp. 964–972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Klitz, L. Gragert, M. Maiers et al., “Four-locus high-resolution HLA typing in a sample of Mexican Americans,” Tissue Antigens, vol. 74, no. 6, pp. 508–513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Sanchez-Velasco, E. Gomez-Casado, J. Martinez-Laso et al., “HLA alleles in isolated populations from north Spain: origin of the basques and the ancient Iberians,” Tissue Antigens, vol. 61, no. 5, pp. 384–392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Comas, E. Mateu, F. Calafell et al., “HLA class I and class II DNA typing and the origin of Basques,” Tissue Antigens, vol. 51, no. 1, pp. 30–40, 1998. View at Google Scholar · View at Scopus
  51. M. Alcoceba, L. Mari'n, A. Balanzategui, M. E. Sarasquete et al., “Frequency of HLA-A, -B and -DRB1 specificities and haplotypic associations in the population of Castilla y Leon (northwest-central Spain),” Tissue Antigens, vol. 78, no. 4, pp. 249–255, 2011. View at Publisher · View at Google Scholar
  52. C. Crespí, J. Milà, N. Martínez-Pomar et al., “HLA polymorphism in a Majorcan population of Jewish descent: comparison with Majorca, Minorca, Ibiza (Balearic Islands) and other Jewish communities,” Tissue Antigens, vol. 60, no. 4, pp. 282–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Muro, L. Marín, A. Torío et al., “HLA polymorphism in the Murcia population (Spain): in the cradle of the archaeologic Iberians,” Human Immunology, vol. 62, no. 9, pp. 910–921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Rendine, I. Borelli, M. Barbanti, N. Sacchi, S. Roggero, and E. S. Curtoni, “HLA polymorphisms in Italian bone marrow donors: a regional analysis,” Tissue Antigens, vol. 52, no. 2, pp. 135–146, 1998. View at Google Scholar · View at Scopus
  55. J. N. Torimiro, J. K. Carr, N. D. Wolfe et al., “HLA class I diversity among rural rainforest inhabitants in Cameroon: identification of A2612-B4407 haplotype,” Tissue Antigens, vol. 67, no. 1, pp. 30–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Ellis, S. J. Mack, R. F. Leke, I. Quakyi, A. H. Johnson, and C. K. Hurley, “Diversity is demonstrated in class I HLA-A and HLA-B alleles in Cameroon, Africa: description of HLA-A03012, 2612, 3006 and HLA-B1403, 4016, 4703,” Tissue Antigens, vol. 56, no. 4, pp. 291–302, 2000. View at Google Scholar
  57. H. Spínola, J. Bruges-Armas, D. Middleton, and A. Brehm, “HLA polymorphisms in Cabo Verde and Guiné-Bissau inferred from sequence-based typing,” Human Immunology, vol. 66, no. 10, pp. 1082–1092, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Bruges Armas, G. Destro-Bisol, A. López-Vazquez et al., “HLA class I variation in the West African Pygmies and their genetic relationship with other African populations,” Tissue Antigens, vol. 62, no. 3, pp. 233–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Cao, A. M. Moormann, K. E. Lyke et al., “Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci,” Tissue Antigens, vol. 63, no. 4, pp. 293–325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. A. A. A. Assane, G. M. Fabricio-Silva, J. Cardoso-Oliveira et al., “Human leukocyte antigen-A, -B, and -DRB1 allele and haplotype frequencies in the Mozambican population: a blood donor-based population study,” Human Immunology, vol. 71, no. 10, pp. 1027–1032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Tang, E. Naik, C. Costello et al., “Characteristics of HLA class I and class II polymorphisms in Rwandan women,” Experimental and Clinical Immunogenetics, vol. 17, no. 4, pp. 185–198, 2000. View at Google Scholar · View at Scopus
  62. N. Saldanha, C. Spínola, M. R. Santos et al., “HLA polymorphisms in Forros and Angolares from Sao Tome Island (West Africa): evidence for the population origin,” Journal of Genetic Genealogy, vol. 5, no. 2, pp. 76–85, 2009. View at Google Scholar
  63. A. Sanchez-Mazas, Q. G. Steiner, C. Grundschober, and J. M. Tiercy, “The molecular determination of HLA-Cw alleles, in the Mandenka (West Africa) reveals a close genetic relationship between Africans and Europeans,” Tissue Antigens, vol. 56, no. 4, pp. 303–312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Paximadis, T. Y. Mathebula, N. L. Gentle et al., “Human leukocyte antigen class I, (A, B, C) and II, (DRB1) diversity in the black and Caucasian South African population,” Human Immunology, vol. 73, no. 1, pp. 80–92, 2012. View at Google Scholar
  65. G. H. Kijak, A. M. Walsh, R. N. Koehler et al., “HLA class i allele and haplotype diversity in Ugandans supports the presence of a major east African genetic cluster,” Tissue Antigens, vol. 73, no. 3, pp. 262–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Kaiser, “The application of electronic computers to factor analysis,” Educational and Psychological Measurement, vol. 20, pp. 141–151, 1960. View at Publisher · View at Google Scholar
  67. S. L. Bonatto and F. M. Salzano, “Diversity and age of the four major mtDNA haplogroups, and their implications for the peopling of the New World,” American Journal of Human Genetics, vol. 61, no. 6, pp. 1413–1423, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. B. Bertoni, B. Budowle, M. Sans, S. A. Barton, and R. Chakraborty, “Admixture in Hispanics: distribution of ancestral population contributions in the continental United States,” Human Biology, vol. 75, no. 1, pp. 1–11, 2003. View at Google Scholar · View at Scopus
  69. R. Kosoy, R. Nassir, C. Tian et al., “Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America,” Human Mutation, vol. 30, no. 1, pp. 69–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Wang, N. Ray, W. Rojas et al., “Geographic patterns of genome admixture in Latin American Mestizos,” PLoS Genetics, vol. 4, no. 3, Article ID e1000037, 2008. View at Google Scholar
  71. L. G. Carvajal-Carmona, R. Ophoff, S. Service et al., “Genetic demography of Antioquia (Colombia) and the Central Valley of Costa Rica,” Human Genetics, vol. 112, no. 5-6, pp. 534–541, 2003. View at Google Scholar · View at Scopus
  72. A. Cintado, O. Companioni, M. Nazabal et al., “Admixture estimates for the population of Havana City,” Annals of Human Biology, vol. 36, no. 3, pp. 350–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. A. A. Vernaza-Kwiers, I. J. de Gómez, M. Díaz-Isaacs, C. J. Cuero, E. Pérez Guardia, and M. Moreno Saavedra, “Gene frequency and haplotypes of the HLA system in the Panamanian population,” Revista Médica de Panamá, vol. 20, no. 3, pp. 116–123, 1995. View at Google Scholar · View at Scopus
  74. E. A. Santiago-Delpín, S. De Echegaray, F. Rivera-Cruz, and A. Rodríguez-Trinidad, “The histocompatibility profile of the Puerto Rican population,” Transplantation Proceedings, vol. 34, no. 8, pp. 3075–3078, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. I. Alvarez, M. Bengochea, R. Toledo, E. Carretto, and P. C. Hidalgo, “HLA class I antigen and HLA-A, -B, and -C haplotype frequencies in Uruguayans,” Human Biology, vol. 78, no. 4, pp. 513–525, 2006. View at Google Scholar · View at Scopus
  76. S. J. Easaw, D. E. Lake, M. Beer, K. Seiter, E. J. Feldman, and T. Ahmed, “Graft-versus-host disease. Possible higher risk for African American patients,” Cancer, vol. 78, no. 7, pp. 1492–1497, 1996. View at Google Scholar
  77. K. S. Baker, S. M. Davies, N. S. Majhail et al., “Race and socioeconomic status influence outcomes of unrelated donor hematopoietic cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 15, no. 12, pp. 1543–1554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. P. N. Hari, N. S. Majhail, M. J. Zhang et al., “Race and outcomes of autologous hematopoietic cell transplantation for multiple myeloma,” Biology of Blood and Marrow Transplantation, vol. 16, no. 3, pp. 395–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Morishima, “Impact of donor-recipient ethnicity on risk of acute graft-versus-host disease, leukemia relapse and survival in hematopoietic stem cell transplantation from HLA-compatible unrelated donors,” in Proceedings of the 51st ASH Annual Meeting and Exposition, A Report From the International Histocompatibility Workshop Group, New Orleans, Miss, USA, 2009.
  80. M. Remberger, J. Aschan, B. Lönnqvist et al., “An ethnic role for chronic, but not acute, graft-versus-host disease after HLA-identical sibling stem cell transplantation,” European Journal of Haematology, vol. 66, no. 1, pp. 50–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. D. S. Serna, S. J. Lee, M. J. Zhang et al., “Trends in survival rates after allogeneic hematopoietic stem-cell transplantation for acute and chronic leukemia by ethnicity in the United States and Canada,” Journal of Clinical Oncology, vol. 21, no. 20, pp. 3754–3760, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. K. S. Baker, F. R. Loberiza, H. Yu et al., “Outcome of ethnic minorities with acute or chronic leukemia treated with hematopoietic stem-cell transplantation in the United States,” Journal of Clinical Oncology, vol. 23, no. 28, pp. 7032–7042, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. S. C. Hoffmann, E. M. Stanley, E. D. Cox et al., “Ethnicity greatly influences cytokine gene polymorphism distribution,” American Journal of Transplantation, vol. 2, no. 6, pp. 560–567, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Suarez-Kurtz, J. P. Genro, M. O. de et al., “Global pharmacogenomics: impact of population diversity on the distribution of polymorphisms in the CYP2C cluster among Brazilians,” Pharmacogenomics Journal, vol. 12, no. 3, pp. 267–276, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Suarez-Kurtz and S. D. J. Pena, “Pharmacogenomics in the Americas: the impact of genetic admixture,” Current Drug Targets, vol. 7, no. 12, pp. 1649–1658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Morera, R. Barrantes, and R. Marin-Rojas, “Gene admixture in the Costa Rican population,” Annals of Human Genetics, vol. 67, no. 1, pp. 71–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. T. C. Lins, R. G. Vieira, B. S. Abreu et al., “Genetic heterogeneity of self-reported ancestry groups in an admixed Brazilian population,” Journal of Epidemiology, vol. 21, no. 4, pp. 240–245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Hunley and M. Healy, “The impact of founder effects, gene flow, and European admixture on native American genetic diversity,” American Journal of Physical Anthropology, vol. 146, no. 4, pp. 530–538, 2011. View at Google Scholar