Abstract

The parasitic protozoa Trypanosoma cruzi and Leishmania sp release a variety of molecules into their mammalian hosts (ESA: excretory-secretory products). The effects of these ESA on the host cell function may participate in the establishment of a successful infection, in which the parasite persists for a sufficient period of time to complete its life cycle. A number of regulatory components or processes originating from the parasite that control or regulate the metabolism and the growth of host cell have been identified. The purpose of the present review is to analyze some of the current data related to the parasite ESA that interfere with the host cell physiology. Special attention is given to members of conserved protein families demonstrating remarkable diversity and plasticity of function (ie, glutathione S-transferases and related molecules; members of the trans-sialidase and mucin family; and members of the ribosomal protein family). The identification of parasite target molecules and the elucidation of their mode of action toward the host cell represents a step forward in efforts aimed at an immunotherapeutic or pharmacological control of parasitic infection.