BioMed Research International
 Journal metrics
Acceptance rate31%
Submission to final decision67 days
Acceptance to publication30 days
CiteScore4.100
Journal Citation Indicator0.610
Impact Factor3.411

The Effect of Applying Robot-Assisted Task-Oriented Training Using Human-Robot Collaborative Interaction Force Control Technology on Upper Limb Function in Stroke Patients: Preliminary Findings

Read the full article

 Journal profile

BioMed Research International publishes original research articles, review articles, and clinical studies covering a wide range of subjects within the biomedical sciences. The journal will accept both basic and translational research.

 Editor spotlight

BioMed Research International maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Identification of Biomarkers for Predicting Allograft Rejection following Kidney Transplantation Based on the Weighted Gene Coexpression Network Analysis

Kidney transplantation is the promising treatment of choice for chronic kidney disease and end-stage kidney disease and can effectively improve the quality of life and survival rates of patients. However, the allograft rejection following kidney transplantation has a negative impact on transplant success. Therefore, the present study is aimed at screening novel biomarkers for the diagnosis and treatment of allograft rejection following kidney transplantation for improving long-term transplant outcome. In the study, a total of 8 modules and 3065 genes were identified by WGCNA based on the GSE46474 and GSE15296 dataset from the Gene Expression Omnibus (GEO) database. Moreover, the results of Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that these genes were mainly involved in the immune-related biological processes and pathways. Thus, 317 immune-related genes were selected for further analysis. Finally, 5 genes (including CD200R1, VAV2, FASLG, SH2D1B, and RAP2B) were identified as the candidate biomarkers based on the ROC and difference analysis. Furthermore, we also found that in the 5 biomarkers an interaction might exist among each other in the protein and transcription level. Taken together, our study identified CD200R1, VAV2, FASLG, SH2D1B, and RAP2B as the candidate diagnostic biomarkers, which might contribute to the prevention and treatment of allograft rejection following kidney transplantation.

Review Article

Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies

Pulsed electromagnetic field (PEMF) therapy is a type of physical stimulation that affects biological systems by producing interfering or coherent fields. Given that cell types are significantly distinct, which represents an important factor in stimulation, and that PEMFs can have different effects in terms of frequency and intensity, time of exposure, and waveform. This study is aimed at investigating if distinct positive and negative responses would correspond to specific characteristics of cells, frequency and flux density, time of exposure, and waveform. Necessary data were abstracted from the experimental observations of cell-based in vitro models. The observations were obtained from 92 publications between the years 1999 and 2019, which are available on PubMed and Web of Science databases. From each of the included studies, type of cells, pulse frequency of exposure, exposure flux density, and assayed cell responses were extracted. According to the obtained data, most of the experiments were carried out on human cells, and out of 2421 human cell experiments, cell changes were observed only in 51.05% of the data. In addition, the results pointed out the potential effects of PEMFs on some human cell types such as MG-63 human osteosarcoma cells ( value < 0.001) and bone marrow mesenchymal stem cells. However, human osteogenic sarcoma SaOS-2 () and human adipose-derived mesenchymal stem cells (AD-MSCs) showed less sensitivity to PEMFs. Nevertheless, the evidence suggests that frequencies higher than 100 Hz, flux densities between 1 and 10 mT, and chronic exposure more than 10 days would be more effective in establishing a cellular response. This study successfully reported useful information about the role of cell type and signal characteristic parameters, which were of high importance for targeted therapies using PEMFs. Our findings would provide a deeper understanding about the effect of PEMFs in vitro, which could be useful as a reference for many in vivo experiments or preclinical trials.

Research Article

Protective Effect of Luteolin on D-Galactosamine (D-Gal)/Lipopolysaccharide (LPS) Induced Hepatic Injury by in Mice

To observe the effects of luteolin on galactosamine (D-Gal)/lipopolysaccharide (LPS) induced liver injury in mice. Male C57BL/6 mice were randomly divided into 4 groups: normal control group, D-GaI/LPS group, D-GaI/LPS + luteolin (Lu, 20 mg/kg), and D-GaI/LPS + luteolin (Lu, 40 mg/kg). Mice in the normal control group and D-GaI/LPS group were given distilled water while other groups were given drugs in 7 days by gavage. 4 hours after the continuous administration, Gal (700 mg/kg) and LPS (10 mg/kg) were injected intraperitoneally. Mice in the normal control group were given the same volume of vegetable oil solution. 24 h after the establishment of the mice model, blood and liver samples were collected. Hematoxylin (HE) staining was used to observe the changes of hepatic histopathology. Alanine aminotransferase (ALT) and glutamic oxalacetic transaminase (AST) in serum, interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor (TNF-α) were measured by related kits. Western blotting was used to demonstrate the expression levels of related inflammation proteins. Lu significantly reduced levels of proinflammatory cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in serum and liver. Lu restored the pathological changes after galactosamine (D-Gal)/lipopolysaccharide (LPS) treatment. In addition, Lu regulated proteins levels of the NLRP3/NF-κB pathway in liver. Lu exhibited therapeutical effects on D-GaI/LPS induced liver injury in mice which might be related to the regulation of the NLRP3/NF-κB pathway.

Research Article

Multiomics Profiling and Clustering of Low-Grade Gliomas Based on the Integrated Stress Status

Background. Although the prognosis of low-grade glioma is better than that of glioblastoma, there are still some groups with poor prognosis. The integrated stress response contributes to the malignant progress of tumors. As there had limited research focused on the integrated stress status in LGG, it is urgent to profile and reclassify LGG based on the integrated stress response. Methods. Information of glioma patients was obtained from the Chinese Glioma Genome Atlas, The Cancer Genome Atlas, and the GSE16011 cohorts. Statistical analyses were conducted using GraphPad Prism 8 and R language. Results. We summarized and quantified four types of integrated stress responses. Relationships between these four types of stress states and the clinical characteristics were analyzed in low-grade glioma. We then reclassified the patients based on these four scores and found that cluster 2 had the worst prognosis, while cluster 1 had the best prognosis. We also established an accurate integrated stress response risk signature for predicting cluster 2. We found that immune response and suppressive immune cell components were more enriched in the high-risk group. We also profiled the genomic differences between the low- and high-risk groups, including the nonmissense mutation of driver genes and the copy number variations. Conclusion. Low-grade glioma patients were divided into three clusters based on the integrated stress status, with cluster 2 exhibiting malignant transformation trends. The signature adequately reflected the traits of cluster 2, while a high risk score indicated a worse prognosis and an enriched inhibitory immune microenvironment.

Research Article

AngioSuite-Assisted Volume Calculation and Coil Use Prediction in the Endovascular Treatment of Tiny Volume Intracranial Aneurysms

Background and Purpose. Ruptured tiny volume intracranial aneurysms (TVIAs) are associated with high risk of intraprocedural perforation. Aneurysm volume measuring is important for treatment planning and packing density calculation. We aim to assess the ability of the AngioSuite software in calculating TVIAs and guiding the selection of suitable coil. Methods. Thirty-three consecutive patients with 34 TVIAs were prospectively recruited and treated with endovascular techniques. The volume of TVIAs and the required length of coils were calculated by the AngioSuite software before embolization. The treatment efficacy of TVIAs was assessed using the Raymond scale (Rs) and the modified Rankin scale (mRs). Results. Of the 34 aneurysms with an average volume of 7.16 mm3, 13 aneurysms were treated with sole coil embolization, 19 by stent-assisted embolization, and 2 by balloon-assisted embolization. The average coil length was 5.32 cm, and the average packing density was 41.21%. The immediate DSA showed that total occlusion () was achieved in 15 aneurysms, subtotal () in 9, and partial () in 11. Total occlusion was achieved in 30 aneurysms and subtotal in the other 4 aneurysms at 6-month follow-up. Baseline volume and diameter of aneurysms were significantly correlated with the coil length (, ; , ). Conclusions. Coil embolization of TVIAs was easy to achieve high packing density. According to the data from AngioSuite, relative few coils can increase the safety in procedure and stenting may reduce risk of aneurysmal recurrence.

Research Article

Plasma-Derived Exosomal hsa-miR-4488 and hsa-miR-1228-5p: Novel Biomarkers for Dermatomyositis-Associated Interstitial Lung Disease with Anti-Melanoma Differentiation-Associated Protein 5 Antibody-Positive Subset

The present study is aimed at profiling circulating exosome-derived microRNAs (miRNAs/miRs) from patients with dermatomyositis (DM), in particular those complicated with interstitial lung disease (ILD) with anti-melanoma differentiation-associated protein 5 (MDA5) antibody-positive. Fifteen participants were enrolled, including five patients with DM complicated with ILDs prior to treatment with circulating anti-MDA5 antibody-positive status [DM-ILD-MDA5 Ab(+)], five DM patients without ILDs who were negative for 16 detectable myositis-specific antibodies [DM-nonILD-MSA16(-)], and five age- and gender-matched healthy donor controls (HCs). The characteristics of the exosomes extracted by Ribo™ Exosome Isolation Reagent were identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and flow cytometry. Differentially expressed miRNAs, determined by next-generation deep sequencing, were identified through the criteria of and . A total of 38 miRNAs were significantly upregulated in exosomes from patients with DM-ILD-MDA5 Ab(+) compared to those from HC, while 21 miRNAs were significantly downregulated. Compared to exosomes derived from patients with DM-nonILD-MSA16(-), 51 miRNAs were significantly upregulated and 33 miRNAs were significantly downregulated from patients with DM-ILD-MDA5 Ab(+). A total of 73 exosomal miRNAs were significantly differentially expressed between DM-nonILD-MSA16(-) and HC. In particular, two miRNAs, Homo sapiens- (hsa-) miR-4488 and hsa-miR-1228-5p, were common differentially expressed miRNAs among three comparisons. GO and KEGG analyses suggested that several pathways may contribute the pathogenesis of DM-ILD-MDA5 Ab(+) and DM-nonILD-MSA16(-), while PPI network analysis of hsa-miR-4488 and hsa-miR-1228-5p indicated that their predicted target genes, DExD-box helicase 39B and MDM2, may be involved in the mechanisms of DM-ILD-MDA5 Ab(+).

BioMed Research International
 Journal metrics
Acceptance rate31%
Submission to final decision67 days
Acceptance to publication30 days
CiteScore4.100
Journal Citation Indicator0.610
Impact Factor3.411
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.