BioMed Research International

BioMed Research International / 2005 / Article

Research article | Open Access

Volume 2005 |Article ID 129127 |

R. Paniagua-Pérez, E. Madrigal-Bujaidar, S. Reyes-Cadena, D. Molina-Jasso, J. Pérez Gallaga, A. Silva-Miranda, O. Velazco, N. Hernández, G. Chamorro, "Genotoxic and Cytotoxic Studies of Beta-Sitosterol and Pteropodine in Mouse", BioMed Research International, vol. 2005, Article ID 129127, 6 pages, 2005.

Genotoxic and Cytotoxic Studies of Beta-Sitosterol and Pteropodine in Mouse

Received16 Dec 2004
Revised18 Mar 2005
Accepted21 Mar 2005


Beta-sitosterol (BS) and pteropodine (PT) are constituents of various plants with pharmacological activities potentially useful to man. The chemicals themselves possess biomedical properties related to the modulation of the immune and the nervous systems, as well as to the inflammatory process. Therefore, safety evaluation of the compounds is necessary in regard to their probable beneficial use in human health. The present study evaluates their genotoxic and cytotoxic potential by determining the capacity of the compounds to induce sister chromatid exchanges (SCE), or to alter cellular proliferation kinetics (CPK) and the mitotic index (MI) in mouse bone marrow cells. Besides, it also determines their capacity to increase the rate of micronucleated polychromatic erythrocytes (MNPE) in peripheral mouse blood, and the relationship polychromatic erythrocytes/normochromatic erythrocytes (PE/NE) as an index of cytotoxicity. For the first assay, four doses of each compound were tested: 200, 400, 600, and 1000 mg/kg in case of BS, and 100, 200, 300, and 600 mg/kg for PT. The results in regard to both agents showed no SCE increase induced by any of the tested doses, as well as no alteration in the CPK, or in the MI. With respect to the second assay, the results obtained with the two agents were also negative for both the MNPE and the PE/NE index along the daily evaluation made for four days. In the present study, the highest tested dose corresponded to 80% of the LD50 obtained for BS and to 78% in the case of PT. The results obtained establish that the studied agents have neither genotoxic nor cytotoxic effect on the model used, and therefore they encourage studies on their pharmacological properties.

Copyright © 2005 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.