BioMed Research International

BioMed Research International / 2007 / Article
Special Issue

Biomedical Applications of Colloidal Nanocrystals

View this Special Issue

Research Article | Open Access

Volume 2007 |Article ID 090651 | https://doi.org/10.1155/2007/90651

Kimihiro Susumu, H. Tetsuo Uyeda, Igor L. Medintz, Hedi Mattoussi, "Design of Biotin-Functionalized Luminescent Quantum Dots", BioMed Research International, vol. 2007, Article ID 090651, 7 pages, 2007. https://doi.org/10.1155/2007/90651

Design of Biotin-Functionalized Luminescent Quantum Dots

Academic Editor: Marek Osinski
Received25 Jun 2007
Accepted21 Dec 2007
Published18 Mar 2008

Abstract

We report the design and synthesis of a tetraethylene glycol- (TEG-) based bidentate ligand functionalized with dihydrolipoic acid (DHLA) and biotin (DHLA—TEG—biotin) to promote biocompatibility of luminescent quantum dots (QD's). This new ligand readily binds to CdSe—ZnS core-shell QDs via surface ligand exchange. QDs capped with a mixture of DHLA and DHLA—TEG—biotin or polyethylene glycol- (PEG-) (molecular weight average 600) modified DHLA (DHLA—PEG600) and DHLA—TEG—biotin are easily dispersed in aqueous buffer solutions. In particular, homogeneous buffer solutions of QDs capped with a mixture of DHLA—PEG600 and DHLA—TEG—biotin that are stable over broad pH range have been prepared. QDs coated with mixtures of DHLA/DHLA—TEG—biotin and with DHLA—PEG600/DHLA—TEG—biotin were tested in surface binding assays and the results indicate that biotin groups on the QD surface interact specifically with NeutrAvidin-functionalized microtiter well plates.

References

  1. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, no. 5385, pp. 2013–2016, 1998. View at: Publisher Site | Google Scholar
  2. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nature Biotechnology, vol. 22, no. 8, pp. 969–976, 2004. View at: Publisher Site | Google Scholar
  3. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science, vol. 298, no. 5599, pp. 1759–1762, 2002. View at: Publisher Site | Google Scholar
  4. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at: Publisher Site | Google Scholar
  5. H. Mattoussi, J. M. Mauro, E. R. Goldman et al., “Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein,” Journal of the American Chemical Society, vol. 122, no. 49, pp. 12142–12150, 2000. View at: Publisher Site | Google Scholar
  6. Y. A. Wang, J. J. Li, H. Chen, and X. Peng, “Stabilization of inorganic nanocrystals by organic dendrons,” Journal of the American Chemical Society, vol. 124, no. 10, pp. 2293–2298, 2002. View at: Publisher Site | Google Scholar
  7. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. R. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nature Materials, vol. 2, no. 9, pp. 630–638, 2003. View at: Publisher Site | Google Scholar
  8. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” Journal of the American Chemical Society, vol. 126, no. 1, pp. 301–310, 2004. View at: Publisher Site | Google Scholar
  9. A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem, vol. 7, no. 1, pp. 47–57, 2006. View at: Publisher Site | Google Scholar
  10. F. Patolsky, R. Gill, Y. Weizmann, T. Mokari, U. Banin, and I. Wiliner, “Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13918–13919, 2003. View at: Publisher Site | Google Scholar
  11. J. B. Delehanty, I. L. Medintz, T. Pons, F. M. Brunel, P. E. Dawson, and H. Mattoussi, “Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery,” Bioconjugate Chemistry, vol. 17, no. 4, pp. 920–927, 2006. View at: Publisher Site | Google Scholar
  12. H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon, and H. Mattoussi, “Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores,” Journal of the American Chemical Society, vol. 127, no. 11, pp. 3870–3878, 2005. View at: Publisher Site | Google Scholar
  13. A. W. Schwabacher, J. W. Lane, M. W. Schiesher, K. M. Leigh, and C. W. Johnson, “Desymmetrization reactions: efficient preparation of unsymmetrically substituted linker molecules,” The Journal of Organic Chemistry, vol. 63, no. 5, pp. 1727–1729, 1998. View at: Publisher Site | Google Scholar
  14. S. H. Um, G. S. Lee, Y.-J. Lee, K.-K. Koo, C. Lee, and K. B. Yoon, “Self-assembly of avidin and D-biotin-tethering zeolite microcrystals into fibrous aggregates,” Langmuir, vol. 18, no. 11, pp. 4455–4459, 2002. View at: Publisher Site | Google Scholar
  15. N. Charvet, P. Reiss, A. Roget et al., “Biotinylated CdSe/ZnSe nanocrystals for specific fluorescent labeling,” Journal of Materials Chemistry, vol. 14, no. 17, pp. 2638–2642, 2004. View at: Publisher Site | Google Scholar
  16. D. Tong, J. Yao, H. Li, and S. Han, “Synthesis and characterization of thermo- and pH-sensitive block copolymers bearing a biotin group at the poly(ethylene oxide) chain end,” Journal of Applied Polymer Science, vol. 102, no. 4, pp. 3552–3558, 2006. View at: Publisher Site | Google Scholar
  17. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” Journal of the American Chemical Society, vol. 115, no. 19, pp. 8706–8715, 1993. View at: Publisher Site | Google Scholar
  18. M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” Journal of Physical Chemistry, vol. 100, no. 2, pp. 468–471, 1996. View at: Publisher Site | Google Scholar
  19. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec et al., “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” Journal of Physical Chemistry B, vol. 101, no. 46, pp. 9463–9475, 1997. View at: Publisher Site | Google Scholar
  20. Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” Journal of the American Chemical Society, vol. 123, no. 1, pp. 183–184, 2001. View at: Publisher Site | Google Scholar
  21. A. R. Clapp, E. R. Goldman, and H. Mattoussi, “Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins,” Nature Protocols, vol. 1, no. 3, pp. 1258–1266, 2006. View at: Publisher Site | Google Scholar
  22. I. L. Medintz, L. Berti, T. Pons et al., “A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates,” Nano Letters, vol. 7, no. 6, pp. 1741–1748, 2007. View at: Publisher Site | Google Scholar
  23. F. Pinaud, D. King, H.-P. Moore, and S. Weiss, “Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides,” Journal of the American Chemical Society, vol. 126, no. 19, pp. 6115–6123, 2004. View at: Publisher Site | Google Scholar
  24. G. T. Hermanson, in Bioconjugate Techniques, Academic Press, San Diego, Calif, USA, 1996.

Copyright © 2007 Kimihiro Susumu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views411
Downloads998
Citations

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.