Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 201075, 7 pages
http://dx.doi.org/10.1155/2009/201075
Research Article

Engineering and Directed Evolution of a Ca2+ Binding Site A-Deficient AprE Mutant Reveal an Essential Contribution of the Loop Leu75–Leu82 to Enzyme Activity

1Departamento de Biología, Universidad de Guanajuato, Colonia Noria Alta S/N, Guanajuato, 36050 Guanajuato, Mexico
2Centro de Investigación en Alimentos y Nutrición, Facultad de Medicina, Universidad Juárez del Estado de Durango, Avenida Universidad y Anitúa S/N, 34000 Durango, Mexico
3Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Pedro Antonio de los Santos 84, San Miguel Chapultepec 11850, Mexico

Received 12 February 2009; Revised 17 May 2009; Accepted 15 June 2009

Academic Editor: George Makhatadze

Copyright © 2009 Eliel R. Romero-García et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Yang, L. Jiang, L. Zhu, Y. Wu, and S. Yang, “Thermal stable and oxidation-resistant variant of subtilisin E,” Journal of Biotechnology, vol. 81, no. 2-3, pp. 113–118, 2000. View at Publisher · View at Google Scholar
  2. H. Zhao and F. H. Arnold, “Directed evolution converts subtilisin E into a functional equivalent of thermitase,” Protein Engineering, vol. 12, no. 1, pp. 47–53, 1999. View at Google Scholar
  3. P. N. Bryan, “Protein engineering of subtilisin,” Biochimica et Biophysica Acta, vol. 1543, no. 2, pp. 203–222, 2000. View at Publisher · View at Google Scholar
  4. S. L. Strausberg, P. A. Alexander, D. T. Gallagher, G. L. Gilliland, B. L. Barnett, and P. N. Bryan, “Directed evolution of a subtilisin with calcium-independent stability,” Biotechnology, vol. 13, no. 7, pp. 669–673, 1995. View at Google Scholar
  5. S. C. Jain, U. Shinde, Y. Li, M. Inouye, and H. M. Berman, “The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 A resolution,” Journal of Molecular Biology, vol. 284, no. 1, pp. 137–144, 1998. View at Publisher · View at Google Scholar
  6. E. R. Romero-Garcia, J. A. Esquivel-Naranjo, N. Ramirez-Ramirez, J. Garcia-Soto, and M. Pedraza-Reyes, “A single Ser85Ala mutation enhances the catalytic efficiency of subtilisin E from Bacillus subtilis 168,” Biotechnology, vol. 3, pp. 49–55, 2004. View at Google Scholar
  7. H. Kano, S. Taguchi, and H. Momose, “Cold adaptation of a mesophilic serine protease, subtilisin, by in vitro random mutagenesis,” Applied Microbiology and Biotechnology, vol. 47, no. 1, pp. 46–51, 1997. View at Publisher · View at Google Scholar
  8. P. A. Alexander, B. Ruan, and P. N. Bryan, “Cation-dependent stability of subtilisin,” Biochemistry, vol. 40, no. 35, pp. 10634–10639, 2001. View at Publisher · View at Google Scholar
  9. J. H. Miller, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1972.
  10. R. J. Boylan, N. H. Mendelson, D. Brooks, and F. E. Young, “Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid,” Journal of Bacteriology, vol. 110, no. 1, pp. 281–290, 1972. View at Google Scholar
  11. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2nd edition, 1989.
  12. U. Schön and W. Schumann, “Construction of His6-tagging vectors allowing single-step purification of GroES and other polypeptides produced in Bacillus subtilis,” Gene, vol. 147, no. 1, pp. 91–94, 1994. View at Publisher · View at Google Scholar
  13. F. Kunst, N. Ogasawara, I. Moszer et al., “The complete genome sequence of the gram-positive bacterium Bacillus subtilis,” Nature, vol. 390, no. 6657, pp. 249–256, 1997. View at Publisher · View at Google Scholar
  14. M. L. Stahl and E. Ferrari, “Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation,” Journal of Bacteriology, vol. 158, no. 2, pp. 411–418, 1984. View at Google Scholar
  15. J. G. Sampedro, P. Cortes, R. A. Muñoz-Clares, A. Fernández, and S. Uribe, “Thermal inactivation of the plasma membrane H+-ATPase from Kluyveromyces lactis. Protection by trehalose,” Biochimica et Biophysica Acta, vol. 1544, no. 1-2, pp. 64–73, 2001. View at Publisher · View at Google Scholar
  16. T. Gallagher, P. Bryan, and G. L. Gilliland, “Calcium-independent subtilisin by design,” Proteins, vol. 16, no. 2, pp. 205–213, 1993. View at Publisher · View at Google Scholar
  17. O. Almog, T. Gallagher, M. Tordova, J. Hoskins, P. Bryan, and G. L. Gilliland, “Crystal structure of calcium-independent subtilisin BPN' with restored thermal stability folded without the prodomain,” Proteins, vol. 31, no. 1, pp. 21–32, 1998. View at Publisher · View at Google Scholar
  18. J. R. Lacowicz, “Fluorophores,” in Principles of Fluorescence Spectroscopy, J. R. Lacowicz, Ed., pp. 63–93, Kluwer Academic/Plenum Publishers, New York, NY, USA, 1999. View at Google Scholar
  19. G. S. Lakshmikanth and G. Krishnamoorthy, “Solvent-exposed trytophans probe the dynamics at protein surfaces,” Biophysical Journal, vol. 77, no. 2, pp. 1100–1106, 1999. View at Google Scholar
  20. F. S. Markland Jr. and E. L. Smith, “Subtilisins: Primary Structure, Chemical and Physical Properties,” in The Enzymes, P. D. Boyer, Ed., pp. 561–608, Academic Press, New York, NY, USA, 1971. View at Google Scholar
  21. T. Gallagher, J. Oliver, R. Bott, C. Betzel, and G. L. Gilliland, “Subtilisin BPN' at 1.6 A resolution: analysis for discrete disorder and comparison of crystal forms,” Acta Crystallographica Section D, vol. 52, no. 6, pp. 1125–1135, 1996. View at Google Scholar
  22. M. Shopova and N. Genov, “Protonated form of histidine 238 quenches the fluorescence of tryptophan 241 in subtilisin Novo,” International Journal of Peptide and Protein Research, vol. 21, no. 5, pp. 475–478, 1983. View at Google Scholar
  23. R. D. Kidd, H. P. Yennawar, P. Sears, C.-H. Wong, and G. K. Farber, “A weak calcium binding site in subtilisin BPN' has a dramatic effect on protein stability,” Journal of the American Chemical Society, vol. 118, no. 7, pp. 1645–1650, 1996. View at Google Scholar
  24. P. A. Alexander, B. Ruan, S. L. Strausberg, and P. N. Bryan, “Stabilizing mutations and calcium-dependent stability of subtilisin,” Biochemistry, vol. 40, no. 35, pp. 10640–10644, 2001. View at Publisher · View at Google Scholar
  25. L. M. Bech, S. B. Sørensen, and K. Breddam, “Significance of hydrophobic S4-P4 interactions in subtilisin 309 from Bacillus lentus,” Biochemistry, vol. 32, no. 11, pp. 2845–2852, 1993. View at Google Scholar