Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009, Article ID 363145, 11 pages
http://dx.doi.org/10.1155/2009/363145
Research Article

Interaction Map and Selection of microRNA Targets in Parkinson's Disease-Related Genes

1Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad 500007, AP, India
2Centre for Chemical Biology, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, AP, India

Received 31 March 2009; Revised 31 July 2009; Accepted 11 August 2009

Academic Editor: Zhumur Ghosh

Copyright © 2009 Shinde Santosh P. et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Fitzgerald and H. Plun-Favreau, “Emerging pathways in genetic Parkinson's disease: autosomal-recessive genes in Parkinson's disease—a common pathway?” FEBS Journal, vol. 275, no. 23, pp. 5758–5766, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Wood-Kaczmar, S. Gandhi, and N. W. Wood, “Understanding the molecular causes of Parkinson's disease,” Trends in Molecular Medicine, vol. 12, no. 11, pp. 521–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. Davie, “A review of Parkinson's disease,” British Medical Bulletin, vol. 86, no. 1, pp. 109–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Thomas and M. F. Beal, “Parkinson's disease,” Human Molecular Genetics, vol. 16, no. 2, pp. 183–194, 2007. View at Publisher · View at Google Scholar
  5. T. Gasser, “Genetics of Parkinson's disease,” Journal of Neurology, vol. 248, no. 10, pp. 833–840, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. V. Schapira, E. Bezard, J. Brotchie et al., “Novel pharmacological targets for the treatment of Parkinson's disease,” Nature Reviews Drug Discovery, vol. 5, no. 10, pp. 845–854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. R. Cookson, “The biochemistry of Parkinson's disease,” Annual Review of Biochemistry, vol. 74, pp. 29–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Jankovic, “Parkinson's disease: clinical features and diagnosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 4, pp. 368–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Moore, A. B. West, V. L. Dawson, and T. M. Dawson, “Molecular pathophysiology of Parkinson's disease,” Annual Review of Neuroscience, vol. 28, pp. 57–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Rajewsky, “microRNA target predictions in animals,” Nature Genetics, vol. 38, supplement 1, pp. S8–S13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Garofalo, C. Quintavalle, G. Di Leva et al., “MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer,” Oncogene, vol. 27, no. 27, pp. 3845–3855, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. N. Bhattacharyya, R. Habermacher, U. Martine, E. I. Closs, and W. Filipowicz, “Relief of microRNA-mediated translational repression in human cells subjected to stress,” Cell, vol. 125, no. 6, pp. 1111–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences, vol. 99, pp. 15524–15529, 2002. View at Google Scholar
  14. W. J. Lukiw, “Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus,” NeuroReport, vol. 18, no. 3, pp. 297–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Saba, C. D. Goodman, R. L. C. H. Huzarewich, C. Robertson, and S. A. Booth, “A miRNA signature of prion induced neurodegeneration,” PLoS ONE, vol. 3, no. 11, article e3652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Bushati and S. M. Cohen, “microRNAs in neurodegeneration,” Current Opinion in Neurobiology, vol. 18, no. 3, pp. 292–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kim, K. Inoue, J. Ishii et al., “A microRNA feedback circuit in midbrain dopamine neurons,” Science, vol. 317, no. 5842, pp. 1220–1224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Gillardon, M. Mack, W. Rist et al., “MicroRNA and proteome expression profiling in early-symptomatic a-synuclein(A30P)-transgenic mice,” Proteomics-Clinical Applications, vol. 2, no. 5, pp. 697–705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. T. Nelson, W.-X. Wang, and B. W. Rajeev, “MicroRNAs (miRNAs) in neurodegenerative diseases,” Brain Pathology, vol. 18, no. 1, pp. 130–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Bentwich, “Prediction and validation of microRNAs and their targets,” FEBS Letters, vol. 579, no. 26, pp. 5904–5910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. R. Brown and P. Sanseau, “A computational view of microRNAs and their targets,” Drug Discovery Today, vol. 10, no. 8, pp. 595–601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Berezikov, V. Guryev, J. van de Belt, E. Wienholds, R. H. A. Plasterk, and E. Cuppen, “Phylogenetic shadowing and computational identification of human microRNA genes,” Cell, vol. 120, no. 1, pp. 21–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Aharon-Peretz, H. Rosenbaum, and R. Gershoni-Baruch, “Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews,” The New England Journal of Medicine, vol. 351, no. 19, pp. 1972–1977, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Gan-Or, N. Giladi, U. Rozovski et al., “Genotype-phenotype correlations between GBA mutations and Parkinson's disease risk and onset,” Neurology, vol. 70, no. 24, pp. 2277–2283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E.-K. Tan, J. Tong, S. Fook-Chong et al., “Glucocerebrosidase mutations and risk of Parkinson's disease in Chinese patients,” Archives of Neurology, vol. 64, no. 7, pp. 1056–1058, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. D. G. Healy, P. M. Abou-Sleiman, K. R. Ahmadi et al., “NR4A2 genetic variation in sporadic Parkinson's disease: a gene wide approach,” Movement Disorders, vol. 21, pp. 1960–1963, 2006. View at Google Scholar
  27. S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster, “Complete suboptimal folding of RNA and the stability of secondary structures,” Biopolymers, vol. 49, no. 2, pp. 145–165, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander, and D. S. Marks, “MicroRNA targets in Drosophila,” Genome Biology, vol. 5, no. 1, pp. R1–R12, 2003. View at Google Scholar · View at Scopus
  29. B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human microRNA targets,” PLoS Biology, vol. 2, no. 11, article e363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. W. A. Kibbe, “OligoCalc: an online oligonucleotide properties calculator,” Nucleic Acids Research, vol. 35, no. 2, pp. W43–W46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Zhou, X. Duan, J. Qian, and F. Li, “Abundant conserved microRNA target sites in the 5-untranslated region and coding sequence,” Genetica, vol. 137, no. 2, pp. 159–164, 2009. View at Google Scholar
  32. A. M. Duursma, M. Kedde, M. Schrier, C. le Sage, and R. Agami, “miR-148 targets human DNMT3b protein coding region,” RNA, vol. 14, no. 5, pp. 872–877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. J. Forman, A. Legesse-Miller, and H. A. Coller, “A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 14879–14884, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Lal, H. H. Kim, K. Abdelmohsen et al., “p16INK4a translation suppressed by miR-24,” PLoS ONE, vol. 3, no. 3, article e1864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Tay, J. Zhang, A. M. Thomson, B. Lim, and I. Rigoutsos, “MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation,” Nature, vol. 455, no. 7216, pp. 1124–1128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow, “Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA,” Science, vol. 309, no. 5740, pp. 1577–1581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Tanzer and P. F. Stadler, “Molecular evolution of a microRNA cluster,” Journal of Molecular Biology, vol. 339, no. 2, pp. 327–335, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Tanzer and P. F. Stadler, “Evolution of microRNAs,” Methods in Molecular Biology, vol. 342, pp. 35–350, 2006. View at Google Scholar
  39. Y. Hayashita, H. Osada, Y. Tatematsu et al., “A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation,” Cancer Research, vol. 65, no. 21, pp. 9628–9632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Samols, J. Hu, R. L. Skalsky, and R. Renne, “Cloning and identification of a MicroRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus,” Journal of Virology, vol. 79, no. 14, pp. 9301–9305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Zhang, Y.-Q. Wang, and B. Su, “Molecular evolution of a primate-specific microRNA family,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1493–1502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. R. Lytle, T. A. Yario, and J. A. Steitz, “Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5 UTR as in the 3 UTR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9667–9672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Brennecke, A. Stark, R. B. Russell, and S. M. Cohen, “Principles of microRNA-target recognition,” PLoS Biology, vol. 3, no. 3, article e85, 2005. View at Google Scholar · View at Scopus
  44. A. Krek, D. Grün, M. N. Poy et al., “Combinatorial microRNA target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Shahi, S. Loukianiouk, A. Bohne-Lang et al., “Argonaute—a database for gene regulation by mammalian microRNAs,” Nucleic Acids Research, vol. 34, pp. D115–D118, 2006. View at Google Scholar · View at Scopus
  46. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus