Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 594738, 9 pages
http://dx.doi.org/10.1155/2009/594738
Review Article

An Evolutionary Perspective of Animal MicroRNAs and Their Targets

1Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
2Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel

Received 27 March 2009; Accepted 17 June 2009

Academic Editor: Bibekanand Mallick

Copyright © 2009 Noam Shomron et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at PubMed
  2. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar
  3. L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004. View at Publisher · View at Google Scholar · View at PubMed
  4. T. Du and P. D. Zamore, “microPrimer: the biogenesis and function of microRNA,” Development, vol. 132, no. 21, pp. 4645–4652, 2005. View at Publisher · View at Google Scholar · View at PubMed
  5. W. Filipowicz, L. Jaskiewicz, F. A. Kolb, and R. S. Pillai, “Post-transcriptional gene silencing by siRNAs and miRNAs,” Current Opinion in Structural Biology, vol. 15, no. 3, pp. 331–341, 2005. View at Publisher · View at Google Scholar · View at PubMed
  6. R. W. Carthew, “Gene regulation by microRNAs,” Current Opinion in Genetics and Development, vol. 16, no. 2, pp. 203–208, 2006. View at Publisher · View at Google Scholar · View at PubMed
  7. R. H. A. Plasterk, “Micro RNAs in animal development,” Cell, vol. 124, no. 5, pp. 877–881, 2006. View at Publisher · View at Google Scholar · View at PubMed
  8. B. P. Lewis, I.-H. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge, “Prediction of mammalian microRNA targets,” Cell, vol. 115, no. 7, pp. 787–798, 2003. View at Publisher · View at Google Scholar
  9. J. Brennecke, A. Stark, R. B. Russell, and S. M. Cohen, “Principles of microRNA-target recognition,” PLoS Biology, vol. 3, no. 3, article e85, 2005. View at Google Scholar
  10. A. Krek, D. Grün, M. N. Poy et al., “Combinatorial microRNA target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–500, 2005. View at Publisher · View at Google Scholar · View at PubMed
  11. C. B. Nielsen, N. Shomron, R. Sandberg, E. Hornstein, J. Kitzman, and C. B. Burge, “Determinants of targeting by endogenous and exogenous microRNAs and siRNAs,” RNA, vol. 13, no. 11, pp. 1894–1910, 2007. View at Publisher · View at Google Scholar · View at PubMed
  12. S. Ohno, Evolution by Gene Duplication, Springer, New York, NY, USA, 1970.
  13. P. W. H. Holland, J. Garcia-Fernandez, N. A. Williams, and A. Sidow, “Gene duplications and the origins of vertebrate development,” Development, vol. 120, supplement, pp. 125–133, 1994. View at Google Scholar
  14. L.-G. Lundin, “Gene duplications in early metazoan evolution,” Seminars in Cell and Developmental Biology, vol. 10, no. 5, pp. 523–530, 1999. View at Publisher · View at Google Scholar · View at PubMed
  15. J. Hertel, M. Lindemeyer, K. Missal et al., “The expansion of the metazoan microRNA repertoire,” BMC Genomics, vol. 7, article 25, 2006. View at Publisher · View at Google Scholar · View at PubMed
  16. I. Bentwich, A. Avniel, Y. Karov et al., “Identification of hundreds of conserved and nonconserved human microRNAs,” Nature Genetics, vol. 37, no. 7, pp. 766–770, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. R. Zhang, Y. Peng, W. Wang, and B. Su, “Rapid evolution of an X-linked microRNA cluster in primates,” Genome Research, vol. 17, no. 5, pp. 612–617, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. J. Piriyapongsa, L. Mariño-Ramírez, and I. K. Jordan, “Origin and evolution of human microRNAs from transposable elements,” Genetics, vol. 176, no. 2, pp. 1323–1337, 2007. View at Publisher · View at Google Scholar · View at PubMed
  19. F. Ozsolak, L. L. Poling, Z. Wang et al., “Chromatin structure analyses identify miRNA promoters,” Genes & Development, vol. 22, no. 22, pp. 3172–3183, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. J. M. Thomson, M. Newman, J. S. Parker, E. M. Morin-Kensicki, T. Wright, and S. M. Hammond, “Extensive post-transcriptional regulation of microRNAs and its implications for cancer,” Genes & Development, vol. 20, no. 16, pp. 2202–2207, 2006. View at Publisher · View at Google Scholar · View at PubMed
  21. W. Yang, T. P. Chendrimada, Q. Wang et al., “Modulation of microRNA processing and expression through RNA editing by ADAR deaminases,” Nature Structural and Molecular Biology, vol. 13, no. 1, pp. 13–21, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. Y. Kawahara, B. Zinshteyn, P. Sethupathy, H. Iizasa, A. G. Hatzigeorgiou, and K. Nishikura, “Redirection of silencing targets by adenosine-to-inosine editing of miRNAs,” Science, vol. 315, no. 5815, pp. 1137–1140, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, and U. Kutay, “Nuclear export of microRNA precursors,” Science, vol. 303, no. 5654, pp. 95–98, 2004. View at Publisher · View at Google Scholar · View at PubMed
  24. R. Yi, B. P. Doehle, Y. Qin, I. G. Macara, and B. R. Cullen, “Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs,” RNA, vol. 11, no. 2, pp. 220–226, 2005. View at Publisher · View at Google Scholar · View at PubMed
  25. H.-W. Hwang, E. A. Wentzel, and J. T. Mendell, “A hexanucleotide element directs microRNA nuclear import,” Science, vol. 315, no. 5808, pp. 97–100, 2007. View at Publisher · View at Google Scholar · View at PubMed
  26. A. Tanzer and P. F. Stadler, “Molecular evolution of a microRNA cluster,” Journal of Molecular Biology, vol. 339, no. 2, pp. 327–335, 2004. View at Publisher · View at Google Scholar · View at PubMed
  27. A. Rodriguez, S. Griffiths-Jones, J. L. Ashurst, and A. Bradley, “Identification of mammalian microRNA host genes and transcription units,” Genome Research, vol. 14, no. 10A, pp. 1902–1910, 2004. View at Publisher · View at Google Scholar · View at PubMed
  28. N. Iwai and H. Naraba, “Polymorphisms in human pre-miRNAs,” Biochemical and Biophysical Research Communications, vol. 331, no. 4, pp. 1439–1444, 2005. View at Publisher · View at Google Scholar · View at PubMed
  29. B. Weber, C. Stresemann, B. Brueckner, and F. Lyko, “Methylation of human MicroRNA genes in normal and neoplastic cells,” Cell Cycle, vol. 6, no. 9, pp. 1001–1005, 2007. View at Google Scholar
  30. S. Tan, J. Guo, Q. Huang et al., “Retained introns increase putative microRNA targets within 3 UTRs of human mRNA,” FEBS Letters, vol. 581, no. 6, pp. 1081–1086, 2007. View at Publisher · View at Google Scholar · View at PubMed
  31. R. I. Gregory, K.-P. Yan, G. Amuthan et al., “The Microprocessor complex mediates the genesis of microRNAs,” Nature, vol. 432, no. 7014, pp. 235–240, 2004. View at Publisher · View at Google Scholar · View at PubMed
  32. A. M. Denli, B. B. J. Tops, R. H. A. Plasterk, R. F. Ketting, and G. J. Hannon, “Processing of primary microRNAs by the microprocessor complex,” Nature, vol. 432, no. 7014, pp. 231–235, 2004. View at Publisher · View at Google Scholar · View at PubMed
  33. E. Berezikov, W.-J. Chung, J. Willis, E. Cuppen, and E. C. Lai, “Mammalian mirtron genes,” Molecular Cell, vol. 28, no. 2, pp. 328–336, 2007. View at Publisher · View at Google Scholar · View at PubMed
  34. D. J. Luciano, H. Mirsky, N. J. Vendetti, and S. Maas, “RNA editing of a miRNA precursor,” RNA, vol. 10, no. 8, pp. 1174–1177, 2004. View at Publisher · View at Google Scholar · View at PubMed
  35. R. Matsuoka, “Study of the vertebrate MHC multigene family during heart development,” Advances in Experimental Medicine and Biology, vol. 538, pp. 17–30, 2003. View at Google Scholar
  36. B. A. Janowski, S. T. Younger, D. B. Hardy, R. Ram, K. E. Huffman, and D. R. Corey, “Activating gene expression in mammalian cells with promoter-targeted duplex RNAs,” Nature Chemical Biology, vol. 3, no. 3, pp. 166–173, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. D. S. Schwarz, G. Hutvágner, T. Du, Z. Xu, N. Aronin, and P. D. Zamore, “Asymmetry in the assembly of the RNAi enzyme complex,” Cell, vol. 115, no. 2, pp. 199–208, 2003. View at Publisher · View at Google Scholar
  38. T. Hirose, M.-D. Shu, and J. A. Steitz, “Splicing-dependent and -independent modes of assembly for intron-encoded box C/D snoRNPs in mammalian cells,” Molecular Cell, vol. 12, no. 1, pp. 113–123, 2003. View at Publisher · View at Google Scholar
  39. A. Clop, F. Marcq, H. Takeda et al., “A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep,” Nature Genetics, vol. 38, no. 7, pp. 813–818, 2006. View at Publisher · View at Google Scholar · View at PubMed
  40. A. Grishok, A. E. Pasquinelli, D. Conte et al., “Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing,” Cell, vol. 106, no. 1, pp. 23–34, 2001. View at Publisher · View at Google Scholar
  41. G. Hutvágner, J. McLachlan, A. E. Pasquinelli, E. Bálint, T. Tuschl, and P. D. Zamore, “A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA,” Science, vol. 293, no. 5531, pp. 834–838, 2001. View at Publisher · View at Google Scholar · View at PubMed
  42. R. C. Lee and V. Ambros, “An extensive class of small RNAs in Caenorhabditis elegans,” Science, vol. 294, no. 5543, pp. 862–864, 2001. View at Publisher · View at Google Scholar · View at PubMed
  43. J. W. Pham, J. L. Pellino, Y. S. Lee, R. W. Carthew, and E. J. Sontheimer, “A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila,” Cell, vol. 117, no. 1, pp. 83–94, 2004. View at Publisher · View at Google Scholar
  44. J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, “Many roads to maturity: microRNA biogenesis pathways and their regulation,” Nature Cell Biology, vol. 11, no. 3, pp. 228–234, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. P. Bertone, V. Stolc, T. E. Royce et al., “Global identification of human transcribed sequences with genome tiling arrays,” Science, vol. 306, no. 5705, pp. 2242–2246, 2004. View at Publisher · View at Google Scholar · View at PubMed
  46. J. S. Pedersen, G. Bejerano, A. Siepel et al., “Identification and classification of conserved RNA secondary structures in the human genome,” PLoS Computational Biology, vol. 2, no. 4, article e33, 2006. View at Google Scholar
  47. P. Landgraf, M. Rusu, R. Sheridan et al., “A mammalian microRNA expression atlas based on small RNA library sequencing,” Cell, vol. 129, no. 7, pp. 1401–1414, 2007. View at Publisher · View at Google Scholar · View at PubMed
  48. R. Yelin, D. Dahary, R. Sorek et al., “Widespread occurrence of antisense transcription in the human genome,” Nature Biotechnology, vol. 21, no. 4, pp. 379–386, 2003. View at Publisher · View at Google Scholar · View at PubMed
  49. G. Lavorgna, D. Dahary, B. Lehner, R. Sorek, C. M. Sanderson, and G. Casari, “In search of antisense,” Trends in Biochemical Sciences, vol. 29, no. 2, pp. 88–94, 2004. View at Publisher · View at Google Scholar · View at PubMed
  50. K. Okamura, J. W. Hagen, H. Duan, D. M. Tyler, and E. C. Lai, “The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila,” Cell, vol. 130, no. 1, pp. 89–100, 2007. View at Publisher · View at Google Scholar · View at PubMed
  51. J. G. Ruby, C. H. Jan, and D. P. Bartel, “Intronic microRNA precursors that bypass Drosha processing,” Nature, vol. 448, no. 7149, pp. 83–86, 2007. View at Publisher · View at Google Scholar · View at PubMed
  52. M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, “Identification of novel genes coding for small expressed RNAs,” Science, vol. 294, no. 5543, pp. 853–858, 2001. View at Publisher · View at Google Scholar · View at PubMed
  53. E. C. Lai, P. Tomancak, R. W. Williams, and G. M. Rubin, “Computational identification of Drosophila microRNA genes,” Genome Biology, vol. 4, no. 7, article R42, 2003. View at Google Scholar
  54. Y. Altuvia, P. Landgraf, G. Lithwick et al., “Clustering and conservation patterns of human microRNAs,” Nucleic Acids Research, vol. 33, no. 8, pp. 2697–2706, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. S. Baskerville and D. P. Bartel, “Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes,” RNA, vol. 11, no. 3, pp. 241–247, 2005. View at Publisher · View at Google Scholar · View at PubMed
  56. M. J. Weber, “New human and mouse microRNA genes found by homology search,” FEBS Journal, vol. 272, no. 1, pp. 59–73, 2005. View at Publisher · View at Google Scholar · View at PubMed
  57. E. Berezikov, G. van Tetering, M. Verheul et al., “Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis,” Genome Research, vol. 16, no. 10, pp. 1289–1298, 2006. View at Publisher · View at Google Scholar · View at PubMed
  58. S.-L. Lin, J. D. Miller, and S.-Y. Ying, “Intronic microRNA (miRNA),” Journal of Biomedicine and Biotechnology, vol. 2006, no. 4, p. 26818, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. Y.-K. Kim and V. N. Kim, “Processing of intronic microRNAs,” The EMBO Journal, vol. 26, no. 3, pp. 775–783, 2007. View at Publisher · View at Google Scholar · View at PubMed
  60. Y. Liang, D. Ridzon, L. Wong, and C. Chen, “Characterization of microRNA expression profiles in normal human tissues,” BMC Genomics, vol. 8, article 166, 2007. View at Publisher · View at Google Scholar · View at PubMed
  61. A. Sewer, N. Paul, P. Landgraf et al., “Identification of clustered microRNAs using an ab initio prediction method,” BMC Bioinformatics, vol. 6, article 267, 2005. View at Publisher · View at Google Scholar · View at PubMed
  62. H. Seitz, H. Royo, M.-L. Bortolin, S.-P. Lin, A. C. Ferguson-Smith, and J. Cavaillé, “A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain,” Genome Research, vol. 14, no. 9, pp. 1741–1748, 2004. View at Publisher · View at Google Scholar · View at PubMed
  63. B. Zhang, X. Pan, C. H. Cannon, G. P. Cobb, and T. A. Anderson, “Conservation and divergence of plant microRNA genes,” Plant Journal, vol. 46, no. 2, pp. 243–259, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. U. Ohler, S. Yekta, L. P. Lim, D. P. Bartel, and C. B. Burge, “Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification,” RNA, vol. 10, no. 9, pp. 1309–1322, 2004. View at Publisher · View at Google Scholar · View at PubMed
  65. J. Lee, Z. Li, R. Brower-Sinning, and B. John, “Regulatory circuit of human microRNA biogenesis,” PLoS Computational Biology, vol. 3, no. 4, article e67, 2007. View at Publisher · View at Google Scholar · View at PubMed
  66. X. Zhou, J. Ruan, G. Wang, and W. Zhang, “Characterization and identification of microRNA core promoters in four model species,” PLoS Computational Biology, vol. 3, no. 3, article e37, 2007. View at Publisher · View at Google Scholar · View at PubMed
  67. B. Ason, D. K. Darnell, B. Wittbrodt et al., “Differences in vertebrate microRNA expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14385–14389, 2006. View at Publisher · View at Google Scholar · View at PubMed
  68. W. Filipowicz and V. Pogacic, “Biogenesis of small nucleolar ribonucleoproteins,” Current Opinion in Cell Biology, vol. 14, no. 3, pp. 319–327, 2002. View at Publisher · View at Google Scholar
  69. S. Vincenti, V. de Chiara, I. Bozzoni, and C. Presutti, “The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA,” RNA, vol. 13, no. 1, pp. 138–150, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. E. van Rooij, L. B. Sutherland, X. Qi, J. A. Richardson, J. Hill, and E. N. Olson, “Control of stress-dependent cardiac growth and gene expression by a microRNA,” Science, vol. 316, no. 5824, pp. 575–579, 2007. View at Publisher · View at Google Scholar · View at PubMed
  71. J. M. Pawlicki and J. A. Steitz, “Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production,” Journal of Cell Biology, vol. 182, no. 1, pp. 61–76, 2008. View at Publisher · View at Google Scholar · View at PubMed
  72. J. M. Pawlicki and J. A. Steitz, “Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: processing at transcription sites or accumulation in SC35 foci,” Cell Cycle, vol. 8, no. 3, pp. 345–356, 2009. View at Google Scholar
  73. M. Morlando, M. Ballarino, N. Gromak, F. Pagano, I. Bozzoni, and N. J. Proudfoot, “Primary microRNA transcripts are processed co-transcriptionally,” Nature Structural and Molecular Biology, vol. 15, no. 9, pp. 902–909, 2008. View at Publisher · View at Google Scholar · View at PubMed
  74. N. Shomron and C. Levy, “MicroRNA-biogenesis and pre-mRNA splicing crosstalk,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 594678, 6 pages, 2009. View at Publisher · View at Google Scholar · View at PubMed
  75. S. Butenas, R. F. Branda, C. Van't Veer, K. M. Cawthern, and K. G. Mann, “Platelets and phospholipids in tissue factor-initiated thrombin generation,” Thrombosis and Haemostasis, vol. 86, no. 2, pp. 660–667, 2001. View at Google Scholar
  76. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at PubMed
  77. E. Morkin, “Control of cardiac myosin heavy chain gene expression,” Microscopy Research and Technique, vol. 50, no. 6, pp. 522–531, 2000. View at Publisher · View at Google Scholar
  78. D. Gaidatzis, E. van Nimwegen, J. Hausser, and M. Zavolan, “Inference of miRNA targets using evolutionary conservation and pathway analysis,” BMC Bioinformatics, vol. 8, article 69, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. R. Revilla-i-Domingo and E. H. Davidson, “Developmental gene network analysis,” International Journal of Developmental Biology, vol. 47, no. 7-8, pp. 695–703, 2003. View at Google Scholar
  80. L. F. Sempere, C. N. Cole, M. A. Mcpeek, and K. J. Peterson, “The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint,” Journal of Experimental Zoology Part B, vol. 306, no. 6, pp. 575–588, 2006. View at Publisher · View at Google Scholar · View at PubMed
  81. K. Chen and N. Rajewsky, “Natural selection on human microRNA binding sites inferred from SNP data,” Nature Genetics, vol. 38, no. 12, pp. 1452–1456, 2006. View at Publisher · View at Google Scholar · View at PubMed
  82. M. A. Saunders, H. Liang, and W.-H. Li, “Human polymorphism at microRNAs and microRNA target sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3300–3305, 2007. View at Publisher · View at Google Scholar · View at PubMed
  83. K. K.-H. Farh, A. Grimson, C. Jan et al., “The widespread impact of mammalian microRNAs on mRNA repression and evolution,” Science, vol. 310, no. 5755, pp. 1817–1821, 2005. View at Publisher · View at Google Scholar · View at PubMed
  84. R. C. Friedman, K. K.-H. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at Publisher · View at Google Scholar · View at PubMed
  85. J. L. Umbach and B. R. Cullen, “The role of RNAi and microRNAs in animal virus replication and antiviral immunity,” Genes & Development, vol. 23, no. 10, pp. 1151–1164, 2009. View at Publisher · View at Google Scholar · View at PubMed
  86. B. R. Cullen, “Viral and cellular messenger RNA targets of viral microRNAs,” Nature, vol. 457, no. 7228, pp. 421–425, 2009. View at Publisher · View at Google Scholar · View at PubMed
  87. B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human microRNA targets,” PLoS Biology, vol. 2, no. 11, article e363, 2004. View at Publisher · View at Google Scholar · View at PubMed
  88. R. Shalgi, D. Lieber, M. Oren, and Y. Pilpel, “Global and local architecture of the mammalian microRNA-transcription factor regulatory network,” PLoS Computational Biology, vol. 3, no. 7, article e131, 2007. View at Google Scholar
  89. S. Artzi, A. Kiezun, and N. Shomron, “miRNAminer: a tool for homologous microRNA gene search,” BMC Bioinformatics, vol. 9, article 39, 2008. View at Publisher · View at Google Scholar · View at PubMed
  90. Q. Jing, S. Huang, S. Guth et al., “Involvement of microRNA in AU-rich element-mediated mRNA instability,” Cell, vol. 120, no. 5, pp. 623–634, 2005. View at Publisher · View at Google Scholar · View at PubMed
  91. C. A. Beelman and R. Parker, “Degradation of mRNA in eukaryotes,” Cell, vol. 81, no. 2, pp. 179–183, 1995. View at Google Scholar
  92. R. Ashfield, P. Enriquez-Harris, and N. J. Proudfoot, “Transcriptional termination between the closely linked human complement genes C2 and factor B: common termination factor for C2 and c-myc?” The EMBO Journal, vol. 10, no. 13, pp. 4197–4207, 1991. View at Google Scholar
  93. M. Yonaha and N. J. Proudfoot, “Transcriptional termination and coupled polyadenylation in vitro,” The EMBO Journal, vol. 19, no. 14, pp. 3770–3777, 2000. View at Google Scholar
  94. N. R. Smalheiser and V. I. Torvik, “Alu elements within human mRNAs are probable microRNA targets,” Trends in Genetics, vol. 22, no. 10, pp. 532–536, 2006. View at Publisher · View at Google Scholar · View at PubMed
  95. K. Newcombe, T. Glassco, and C. Mueller, “Regulation of the DBP promoter by PAR proteins and in leukemic cells bearing an E2A/HLF translocation,” Biochemical and Biophysical Research Communications, vol. 245, no. 2, pp. 633–639, 1998. View at Publisher · View at Google Scholar · View at PubMed
  96. M. Lapidot and Y. Pilpel, “Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms,” EMBO Reports, vol. 7, no. 12, pp. 1216–1222, 2006. View at Publisher · View at Google Scholar · View at PubMed
  97. L.-C. Li, S. T. Okino, H. Zhao et al., “Small dsRNAs induce transcriptional activation in human cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17337–17342, 2006. View at Publisher · View at Google Scholar · View at PubMed
  98. F. Saatcioglu, D. J. Perry, D. S. Pasco, and J. B. Fagan, “Multiple DNA-binding factors interact with overlapping specificities at the aryl hydrocarbon response element of the cytochrome P450IA1 gene,” Molecular and Cellular Biology, vol. 10, no. 12, pp. 6408–6416, 1990. View at Google Scholar
  99. K. Chen and N. Rajewsky, “The evolution of gene regulation by transcription factors and microRNAs,” Nature Reviews Genetics, vol. 8, no. 2, pp. 93–103, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001. View at Publisher · View at Google Scholar · View at PubMed
  101. J. F. Abelson, K. Y. Kwan, B. J. O'Roak et al., “Sequence variants in SLITRK1 are associated with Tourette's syndrome,” Science, vol. 310, no. 5746, pp. 317–320, 2005. View at Publisher · View at Google Scholar · View at PubMed
  102. R. Durrett and D. Schmidt, “Waiting for regulatory sequences to appear,” Annals of Applied Probability, vol. 17, no. 1, pp. 1–32, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  103. A. Stark, J. Brennecke, N. Bushati, R. B. Russell, and S. M. Cohen, “Animal microRNAs confer robustness to gene expression and have a significant impact on 3 UTR evolution,” Cell, vol. 123, no. 6, pp. 1133–1146, 2005. View at Publisher · View at Google Scholar · View at PubMed