Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 617509, 8 pages
http://dx.doi.org/10.1155/2009/617509
Research Article

Genome-Wide Transcriptional Profiling of the Response of Staphylococcus aureus to Cryptotanshinone

1Key Laboratory of Zoonosis, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Ministry of Education, Changchun 130062, China
2Lanzhou Institute of Animal Science and Veterinary Pharmaceutics Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China

Received 1 December 2008; Revised 21 May 2009; Accepted 28 June 2009

Academic Editor: Daniele Daffonchio

Copyright © 2009 Haihua Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. M. Smith and A. B. Vickers, “Natural history of 338 treated and untreated patients with staphylococcal septicaemia (1936–1955),” The Lancet, vol. 1, no. 7138, pp. 1318–1322, 1960. View at Google Scholar
  2. G. L. Archer, “Staphylococcus aureus: a well-armed pathogen,” Clinical Infectious Diseases, vol. 26, no. 5, pp. 1179–1181, 1998. View at Google Scholar
  3. I. T. Paulsen, M. H. Brown, and R. A. Skurray, “Proton-dependent multidrug efflux systems,” Microbiological Reviews, vol. 60, no. 4, pp. 575–608, 1996. View at Google Scholar
  4. G. B. Mahady, “Medicinal plants for the prevention and treatment of bacterial infections,” Current Pharmaceutical Design, vol. 11, no. 19, pp. 2405–2427, 2005. View at Publisher · View at Google Scholar
  5. H. C. Lin and W. L. Chang, “Diterpenoids from salvia miltiorrhiza,” Phytochemistry, vol. 53, no. 8, pp. 951–953, 2000. View at Google Scholar
  6. G. Honds, Y. Keezuka, and M. Tabata, “Isolation of an antidermatophytic substance from the roots of Salvia miltriorrhiza,” Chemical & Pharmaceutical Bulletin, vol. 36, no. 1, pp. 408–415, 1988. View at Google Scholar
  7. D.-S. Lee, S.-H. Lee, J.-G. Noh, and S.-D. Hong, “Antibacterial activities of cryptotanshinone and dihydrotanshinone I from a medicinal herb, Salvia miltiorrhiza bunge,” Bioscience, Biotechnology and Biochemistry, vol. 63, no. 12, pp. 2236–2239, 1999. View at Google Scholar
  8. F. McAleese, S. W. Wu, K. Sieradzki et al., “Overexpression of genes of the cell wall stimulon in clinical isolates of Staphylococcus aureus exhibiting vancomycin-intermediate-S. aureus-type resistance to vancomycin,” Journal of Bacteriology, vol. 188, no. 3, pp. 1120–1133, 2006. View at Publisher · View at Google Scholar
  9. S. Utaida, P. M. Dunman, D. Macapagal et al., “Genome-wide transcriptional profiling of the response of Staphylococcus aureus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon,” Microbiology, vol. 149, no. 10, pp. 2719–2732, 2003. View at Google Scholar
  10. H. Yin, Y. Zhao, Y. Zhang et al., “Genome-wide analysis of the expression profile of Saccharomyces cerevisiae in response to treatment with the plant isoflavone, wighteone, as a potential antifungal agent,” Biotechnology Letters, vol. 28, no. 2, pp. 99–105, 2006. View at Publisher · View at Google Scholar
  11. S. Draghici, P. Khatri, R. P. Martins, G. C. Ostermeier, and S. A. Krawetz, “Global functional profiling of gene expression,” Genomics, vol. 81, no. 2, pp. 98–104, 2003. View at Publisher · View at Google Scholar
  12. Y. Ge, S. Difuntorum, S. Touami et al., “In vitro antimicrobial activity of GSQ1530, a new heteroaromatic polycyclic compound,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 10, pp. 3168–3174, 2002. View at Publisher · View at Google Scholar
  13. D. Wang, L. Yu, H. Xiang et al., “Global transcriptional profiles of Staphylococcus aureus treated with berberine chloride,” FEMS Microbiology Letters, vol. 279, no. 2, pp. 217–225, 2008. View at Publisher · View at Google Scholar
  14. D. Y. Wang, C. C. Yeh, J. H. Lee, C. F. Hung, and J. G. Chung, “Berberine inhibited arylamine N-acetyltransferase activity and gene expression and DNA adduct formation in human malignant astrocytoma (G9T/VGH) and brain glioblastoma multiforms (GBM 8401) cells,” Neurochemical Research, vol. 27, no. 9, pp. 883–889, 2002. View at Publisher · View at Google Scholar
  15. C. X. Liu and P. G. Xiao, “Recalling the research and development of new drugs originating from chinese traditional and herbal drugs,” Asian Journal of Drug Metabolism and Pharmacokinetics, vol. 2, no. 2, pp. 133–156, 2002. View at Google Scholar
  16. D. Baricevic and T. Bartol, “The biological/pharmacological activity of the Salvia genus,” in SAGE-The Genus Salvia, S. E. Kintzios, Ed., pp. 143–184, Harwood Academic Publishers, Amsterdam, The Netherlands, 2000. View at Google Scholar
  17. E. P. Skaar and O. Schneewind, “Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme,” Microbes and Infection, vol. 6, no. 4, pp. 390–397, 2004. View at Publisher · View at Google Scholar
  18. S. K. Hazmanian, E. P. Skaar, A. H. Gaspar et al., “Passage of heme-iron across the envelope of Staphylococcus aureus,” Science, vol. 299, no. 5608, pp. 906–909, 2003. View at Publisher · View at Google Scholar
  19. S. Fuchs, J. Pané-Farré, C. Kohler, M. Hecker, and S. Engelmann, “Anaerobic gene expression in Staphylococcus aureus,” Journal of Bacteriology, vol. 189, no. 11, pp. 4275–4289, 2007. View at Publisher · View at Google Scholar
  20. G. Sawers and G. Watson, “A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase,” Molecular Microbiology, vol. 29, no. 4, pp. 945–954, 1998. View at Publisher · View at Google Scholar
  21. F. Sargent, “Constructing the wonders of the bacterial world: biosynthesis of complex enzymes,” Microbiology, vol. 153, no. 3, pp. 633–651, 2007. View at Publisher · View at Google Scholar
  22. N. R. Harborne, L. Griffiths, S. J. W. Busby, and J. A. Cole, “Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon,” Molecular Microbiology, vol. 6, no. 19, pp. 2805–2813, 1992. View at Publisher · View at Google Scholar
  23. K. A. Burke and J. Lascelles, “Nitrate reductase system in Staphylococcus aureus wild type and mutants,” Journal of Bacteriology, vol. 123, no. 1, pp. 308–316, 1975. View at Google Scholar
  24. J. Makhlin, T. Kofman, I. Borovok et al., “Staphylococcus aureus ArcR controls expression of the arginine deiminase operon,” Journal of Bacteriology, vol. 189, no. 16, pp. 5976–5986, 2007. View at Publisher · View at Google Scholar
  25. A. Maghnouj, T. F. de Sousa Cabral, V. Stalon, and C. Vander Wauven, “The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor ArgR,” Journal of Bacteriology, vol. 180, no. 24, pp. 6468–6475, 1998. View at Google Scholar
  26. S. Alexeeva, K. J. Hellingwerf, and M. J. Teixeira de Mattos, “Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions,” Journal of Bacteriology, vol. 185, no. 1, pp. 204–209, 2003. View at Publisher · View at Google Scholar
  27. G. L. Mandell, “Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal leukocyte interaction,” Journal of Clinical Investigation, vol. 55, no. 3, pp. 561–566, 1975. View at Google Scholar
  28. K. Cosgrove, G. Coutts, I.-M. Jonsson et al., “Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus,” Journal of Bacteriology, vol. 189, no. 3, pp. 1025–1035, 2007. View at Publisher · View at Google Scholar
  29. W. Chang, F. Toghrol, and W. E. Bentley, “Toxicogenomic response of Staphylococcus aureus to peracetic acid,” Environmental Science and Technology, vol. 40, no. 16, pp. 5124–5131, 2006. View at Publisher · View at Google Scholar
  30. L. Chen, Q.-W. Xie, and C. Nathan, “Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates,” Molecular Cell, vol. 1, no. 6, pp. 795–805, 1998. View at Google Scholar
  31. W. Chang, D. A. Small, F. Toghrol, and W. E. Bentley, “Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide,” Journal of Bacteriology, vol. 188, no. 4, pp. 1648–1659, 2006. View at Publisher · View at Google Scholar
  32. L. Peng and K. Shimizu, “Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement,” Applied Microbiology and Biotechnology, vol. 61, no. 2, pp. 163–178, 2003. View at Google Scholar
  33. J. Mostertz, C. Scharf, M. Hecker, and G. Homuth, “Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress,” Microbiology, vol. 150, no. 2, pp. 497–512, 2004. View at Google Scholar
  34. H.-K. Young, R. A. Skurray, and S. G. B. Amyes, “Plasmid-mediated trimethoprim-resistance in Staphylococcus aureus. Characterization of the first Gram-positive plasmid dihydrofolate reductase (type S1),” Biochemical Journal, vol. 243, no. 1, pp. 309–312, 1987. View at Google Scholar
  35. H. Murakami, H. Matsumaru, M. Kanamori, H. Hayashi, and T. Ohta, “Cell wall-affecting antibiotics induce expression of a novel gene, drp 35, in Staphylococcus aureus,” Biochemical and Biophysical Research Communications, vol. 264, no. 2, pp. 348–351, 1999. View at Publisher · View at Google Scholar
  36. K. Morikawa, T. Hidaka, H. Murakami, H. Hayashi, and T. Ohta, “Staphylococcal Drp35 is the functional counterpart of the eukaryotic PONs,” FEMS Microbiology Letters, vol. 249, no. 1, pp. 185–190, 2005. View at Publisher · View at Google Scholar
  37. K. Kobayashi, S. D. Ehrlich, A. Albertini et al., “Essentia Bacillus subtilis genes,” in Proceedings of National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4678–4683, 2003.
  38. P. K. Martin, T. Li, D. Sun, D. P. Biek, and M. B. Schmid, “Role in cell permeability of an essential two-component system in Staphylococcus aureus,” Journal of Bacteriology, vol. 181, no. 12, pp. 3666–3673, 1999. View at Google Scholar
  39. J. D. Blount, N. B. Metcalfe, T. R. Birkhead, and P. F. Surai, “Carotenoid modulation of immune function and sexual attractiveness in zebra finches,” Science, vol. 300, no. 5616, pp. 125–127, 2003. View at Publisher · View at Google Scholar
  40. S. T. Mayne, “Beta-carotene, carotenoids, and disease prevention in humans,” FASEB Journal, vol. 10, no. 7, pp. 690–701, 1996. View at Google Scholar
  41. D. Umeno and F. H. Arnold, “Evolution of a pathway to novel long-chain carotenoids,” Journal of Bacteriology, vol. 186, no. 5, pp. 1531–1536, 2004. View at Publisher · View at Google Scholar
  42. W. E. Kloos, K. H. Schleifer, and F. Gotz, “The genus staphylococcus,” in The Prokaryotes, B. Balows, H. G. Triiper, M. Dworkin, W. Harder, and K. H. Schleifer, Eds., pp. 1369–1420, Springer, New York, NY, USA, 1991. View at Google Scholar
  43. L. Tao, A. Schenzle, J. M. Odom, and Q. Cheng, “Novel carotenoid oxidase involved in biosynthesis of 4, 4-diapolycopene dialdehyde,” Applied and Environmental Microbiology, vol. 71, no. 6, pp. 3294–3301, 2005. View at Publisher · View at Google Scholar