Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009, Article ID 680160, 10 pages
http://dx.doi.org/10.1155/2009/680160
Review Article

The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

Biotechnology Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur 176061, Himachal Pradesh, India

Received 27 March 2009; Revised 10 August 2009; Accepted 29 October 2009

Academic Editor: Sudhir Kumar Sopory

Copyright © 2009 Gopaljee Jha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Biggs, “Apple scab,” in Compendium of Apple and Pear Diseases, A. L. Jones and H. S. Aldwinckle, Eds., pp. 6–9, APS, St. Paul, Minn, USA, 1990. View at Google Scholar
  2. W. E. MacHardy, Apple Scab, Biology, Epidemiology, and Management, APS, St. Paul, Minn, USA, 1996.
  3. W. E. MacHardy, D. M. Gadoury, and C. Gessler, “Parasitic and biological fitness of Venturia inaequalis: relationship to disease management strategies,” Plant Disease, vol. 85, no. 10, pp. 1036–1051, 2001. View at Google Scholar · View at Scopus
  4. P. R. Day, D. M. Boone, and G. W. Keitt, “Venturia inaequalis (Cke.) Wint. XI. The chromosome number,” American Journal of Botany, vol. 43, pp. 835–838, 1956. View at Google Scholar
  5. D. M. Gadoury and W. E. MacHardy, “Negative geotropism in Venturia inaequalis,” Phytopathology, vol. 75, pp. 856–859, 1985. View at Google Scholar
  6. A. Stensvand, H. Eikemo, R. C. Seem, and D. M. Gadoury, “Ascospore release by Venturia inaequalis during periods of extended daylight and low temperature at Nordic latitudes,” European Journal of Plant Pathology, vol. 125, no. 1, pp. 173–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. J. Smereka, W. E. MacHardy, and A. P. Kausch, “Cellular differentiation in Venturia inaequalis ascospores during germination and penetration of apple leaves,” Canadian Journal of Botany, vol. 65, pp. 2549–2561, 1987. View at Google Scholar
  8. C. F. A. Schumacher, U. Steiner, H.-W. Dehne, and E.-C. Oerke, “Localized adhesion of nongerminated Venturia inaequalis conidia to leaves and artificial surfaces,” Phytopathology, vol. 98, no. 7, pp. 760–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. U. Steiner and E.-C. Oerke, “Localized melanization of appressoria is required for pathogenicity of Venturia inaequalis,” Phytopathology, vol. 97, no. 10, pp. 1222–1230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Fitzgerald, J. A. L. van Kan, and K. M. Plummer, “Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats,” Fungal Genetics and Biology, vol. 41, no. 10, pp. 963–971, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Köller, D. M. Parker, and C. M. Becker, “Role of cutinase in the penetration of apple leaves by Venturia inaequalis,” Phytopathology, vol. 81, pp. 1375–1379, 1991. View at Google Scholar
  12. W. Köller and D. M. Parker, “Purification and characterization of cutinase from Venturia inaequalis,” Phytopathology, vol. 79, pp. 278–283, 1989. View at Google Scholar
  13. R. L. Nicholson, J. Kuc, and E. B. Williams, “Histochemical demonstration of transitory esterase activity in Venturia inaequalis,” Phytopathology, vol. 62, pp. 1242–1247, 1972. View at Google Scholar
  14. M. Chevalier, C. Bernard, M. Tellier et al., “Host and non-host interaction of Venturia inaequalis and Venturia pirina on Pyrus communis and Malus x domestica,” Acta Horticulturae, vol. 663, pp. 205–208, 2004. View at Google Scholar
  15. N. Kucheryava, J. K. Bowen, P. W. Sutherland et al., “Two novel Venturia inaequalis genes induced upon morphogenetic differentiation during infection and in vitro growth on cellophane,” Fungal Genetics and Biology, vol. 45, no. 10, pp. 1329–1339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Bénaouf and L. Parisi, “Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species,” Phytopathology, vol. 90, no. 3, pp. 236–242, 2000. View at Google Scholar · View at Scopus
  17. D. M. Boone, “Genetics of Venturia inaequalis,” Annual Review of Phytopathology, vol. 9, pp. 297–318, 1971. View at Google Scholar
  18. J. Win, D. R. Greenwood, and K. M. Plummer, “Characterisation of a protein from Venturia inaequalis that induces necrosis in Malus carrying the Vm resistance gene,” Physiological and Molecular Plant Pathology, vol. 62, no. 4, pp. 193–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. V. G. M. Bus, E. H. A. Rikkerink, W. E. van de Weg et al., “The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple,” Molecular Breeding, vol. 15, no. 1, pp. 103–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. V. G. M. Bus, F. N. D. Laurens, W. E. van de Weg et al., “The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A,” New Phytologist, vol. 166, no. 3, pp. 1035–1049, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Parisi, V. Fouillet, H. J. Schouten et al., “Variability of the pathogenicity of Venturia inaequalis in Europe,” Acta Horticulturae, vol. 663, pp. 107–113, 2004. View at Google Scholar
  22. A. Kollar, “Characterization of an endopolygalacturonase produced by the apple scab fungus, Venturia inaequalis,” Mycological Research, vol. 102, no. 3, pp. 313–319, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Valsangiacomo and C. Gessler, “Purification and characterization of an exo-polygalacturonase produced by Venturia inaequalis, the causal agent of apple scab,” Physiological and Molecular Plant Pathology, vol. 40, no. 1, pp. 63–77, 1992. View at Google Scholar · View at Scopus
  24. E. S. Jacobson, “Pathogenic roles for fungal melanins,” Clinical Microbiology Reviews, vol. 13, no. 4, pp. 708–717, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Jha, R. Rajeshwari, and R. V. Sonti, “Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens,” Molecular Plant-Microbe Interactions, vol. 18, no. 9, pp. 891–898, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. C. A. Ryan and E. E. Farmer, “Oligosaccharide signals in plants: a current assessment,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 42, no. 1, pp. 651–674, 1991. View at Google Scholar · View at Scopus
  27. G. Jha, R. Rajeshwari, and R. V. Sonti, “Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice,” Molecular Plant-Microbe Interactions, vol. 20, no. 1, pp. 31–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Bus, E. Rikkerink, H. S. Aldwinckle et al., “A proposal for the nomenclature of Venturia inaequalis races,” Acta Horticulturae, vol. 814, pp. 739–746, 2009. View at Google Scholar · View at Scopus
  29. B. Le Cam, L. Parisi, and L. Arene, “Evidence of two formae speciales in Venturia inaequalis, responsible for apple and Pyracantha scab,” Phytopathology, vol. 92, no. 3, pp. 314–320, 2002. View at Google Scholar · View at Scopus
  30. G. Schnabel, E. L. Schnabel, and A. L. Jones, “Characterization of ribosomal DNA from Venturia inaequalis and its phylogenetic relationship to rDNA from other tree-fruit Venturia species,” Phytopathology, vol. 89, no. 1, pp. 100–108, 1999. View at Google Scholar · View at Scopus
  31. I. Tenzer and C. Gessler, “Subdivision and genetic structure of four populations of Venturia inaequalis in Switzerland,” European Journal of Plant Pathology, vol. 103, no. 6, pp. 565–571, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Tenzer and C. Gessler, “Genetic diversity of Venturia inaequalis across Europe,” European Journal of Plant Pathology, vol. 105, no. 6, pp. 545–552, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Guérin and B. Le Cam, “Breakdown of the scab resistance gene Vf in apple leads to a founder effect in populations of the fungal pathogen Venturia inaequalis,” Phytopathology, vol. 94, no. 4, pp. 364–369, 2004. View at Google Scholar · View at Scopus
  34. X. Xu, J. Yang, V. Thakur, A. Roberts, and D. J. Barbara, “Population variation of apple scab (Venturia inaequalis) isolates from Asia and Europe,” Plant Disease, vol. 92, no. 2, pp. 247–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Gladieux, X.-G. Zhang, D. Afoufa-Bastien, R.-M. V. Sanhueza, M. Sbaghi, and B. Le Cam, “On the origin and spread of the scab disease of apple: out of central Asia,” PLoS ONE, vol. 3, no. 1, article e1455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Guérin, P. Franck, A. Loiseau, M. Devaux, and B. Le Cam, “Isolation of 21 new polymorphic microsatellite loci in the phytopathogenic fungus Venturia inaequalis,” Molecular Ecology Notes, vol. 4, no. 2, pp. 268–270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Gessler, A. Patocchi, S. Sansavini, S. Tartarini, and L. Gianfranceschi, “Venturia inaequalis resistance in apple,” Critical Reviews in Plant Sciences, vol. 25, no. 6, pp. 473–503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Chevalier, Y. Lespinasse, and S. Renaudin, “A microscopic study of different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia ineaqualis),” Plant Pathology, vol. 40, pp. 249–256, 1991. View at Google Scholar
  39. E. B. Williams and J. Kuc, “Resistance in Malus to Venturia inaequalis,” Annual Review of Phytopathology, vol. 7, pp. 223–246, 1969. View at Google Scholar
  40. H. Sierotzki, M. Eggenschwiler, O. Boillat, J. M. McDermott, and C. Gessler, “Detection of variation in virulence toward susceptible apple cultivars in natural populations of Venturia inaequalis,” Phytopathology, vol. 84, no. 10, pp. 1005–1009, 1994. View at Google Scholar · View at Scopus
  41. F. Ortega, U. Steiner, and H.-W. Dehne, “Induced resistance to apple scab: microscopic studies on the infection cycle of Venturia inaequalis (Cke.) Wint,” Journal of Phytopathology, vol. 146, no. 8-9, pp. 399–405, 1998. View at Google Scholar · View at Scopus
  42. U. Mayr, S. Michalek, D. Treutter, and W. Feucht, “Phenolic compounds of apple and their relationship to scab resistance,” Journal of Phytopathology, vol. 145, no. 2-3, pp. 69–75, 1997. View at Google Scholar · View at Scopus
  43. G. Hrazdina, W. Borejsza-Wysocki, and C. Lester, “Phytoalexin production in an apple cultivar resistant to Venturia inaequalis,” Phytopathology, vol. 87, no. 8, pp. 868–876, 1997. View at Google Scholar · View at Scopus
  44. C. Gosch, H. Halbwirth, J. Kuhn, S. Miosic, and K. Stich, “Biosynthesis of phloridzin in apple (Malus domestica Borkh.),” Plant Science, vol. 176, no. 2, pp. 223–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Hrazdina, “Response of scab-susceptible (McIntosh) and scab-resistant (Liberty) apple tissues to treatment with yeast extract and Venturia inaequalis,” Phytochemistry, vol. 64, no. 2, pp. 485–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. A. E. Gau, M. Koutb, M. Piotrowski, and K. Kloppstech, “Accumulation of pathogenesis-related proteins in the apoplast of a susceptible cultivar of apple (Malus domestica cv. Elstar) after infection by Venturia inaequalis and constitutive expression of PR genes in the resistant cultivar Remo,” European Journal of Plant Pathology, vol. 110, no. 7, pp. 703–711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Degenhardt, A. N. Al-Masri, S. Kürkcüoglu, I. Szankowski, and A. E. Gau, “Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica,” Molecular Genetics and Genomics, vol. 273, no. 4, pp. 326–335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Ziadi, P. Poupard, M.-N. Brisset, J.-P. Paulin, and P. Simoneau, “Characterization in apple leaves of two subclasses of PR-10 transcripts inducible by acibenzolar-S-methyl, a functional analogue of salicylic acid,” Physiological and Molecular Plant Pathology, vol. 59, no. 1, pp. 33–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Poupard, L. Parisi, C. Campion, S. Ziadi, and P. Simoneau, “A wound- and ethephon-inducible PR10 gene subclass from apple is differentially expressed during infection with a compatible and an incompatible race of Venturia inaequalis,” Physiological and Molecular Plant Pathology, vol. 62, no. 1, pp. 3–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. J. P. Bolar, J. L. Norelli, K.-W. Wong, C. K. Hayes, G. E. Harman, and H. S. Aldwinckle, “Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor,” Phytopathology, vol. 90, no. 1, pp. 72–77, 2000. View at Google Scholar · View at Scopus
  51. J. P. Bolar, J. L. Norelli, G. E. Harman, S. K. Brown, and H. S. Aldwinckle, “Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants,” Transgenic Research, vol. 10, no. 6, pp. 533–543, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Faize, M. Malnoy, F. Dupuis, M. Chevalier, L. Parisi, and E. Chevreau, “Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple,” Phytopathology, vol. 93, no. 12, pp. 1496–1504, 2003. View at Google Scholar · View at Scopus
  53. E. Chevreau, F. Dupuis, C. Ortolan et al., “Transformation of apple for durable scab resistance, expression of a puroindoline gene in a susceptible and resistant (Vf) genotype,” Acta Horticulturae, vol. 560, pp. 323–326, 2001. View at Google Scholar
  54. M. Faize, S. Sourice, F. Dupuis, L. Parisi, M. F. Gautier, and E. Chevreau, “Expression of wheat puroindoline-b reduces scab susceptibility in transgenic apple (Malus x domestica Borkh.),” Plant Science, vol. 167, no. 2, pp. 347–354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Cao, J. Glazebrook, J. D. Clarke, S. Volko, and X. Dong, “The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats,” Cell, vol. 88, no. 1, pp. 57–63, 1997. View at Google Scholar · View at Scopus
  56. M. Malnoy, Q. Jin, E. E. Borejsza-Wysocka, S. Y. He, and H. S. Aldwinckle, “Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica,” Molecular Plant-Microbe Interactions, vol. 20, no. 12, pp. 1568–1580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. J. L. Dangl and J. D. G. Jones, “Plant pathogens and integrated defense responses,” Nature, vol. 411, pp. 826–833, 2001. View at Google Scholar
  58. B. Le Cam, L. Parisi, M. Devaux et al., “Identification and characterization of molecular markers linked to the avirulence avrVg of Venturia inaequalis,” in Proceedings of the 9th International Congress of Molecular Plant-Microbe Interactions, Amsterdam, The Netherlands, 1999.
  59. G. A. L. Broggini, B. Le Cam, L. Parisi et al., “Construction of a contig of BAC clones spanning the region of the apple scab avirulence gene AvrVg,” Fungal Genetics and Biology, vol. 44, no. 1, pp. 44–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. J. A. Crosby, J. Janick, P. C. Pecknold et al., “Breeding apples for scab resistance: 1945–1990,” Fruit Variety Journal, vol. 46, pp. 145–166, 1992. View at Google Scholar
  61. G. J. King, S. Tartarini, L. Brown, F. Gennari, and S. Sansavini, “Introgression of the Vf source of scab resistance and distribution of linked marker alleles within the Malus gene pool,” Theoretical and Applied Genetics, vol. 99, no. 6, pp. 1039–1046, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Parisi, Y. Lespinasse, J. Guillaumes et al., “A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene,” Phytopathology, vol. 83, pp. 533–537, 1993. View at Google Scholar
  63. J. M. Soriano, S. G. Joshi, M. van Kaauwen et al., “Identification and mapping of the novel apple scab resistance gene Vd3,” Tree Genetics and Genomes, vol. 5, no. 3, pp. 475–482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Patocchi, A. Frei, J. E. Frey, and M. Kellerhals, “Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes,” Molecular Breeding, vol. 24, no. 4, pp. 337–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Soufflet-Freslon, L. Gianfranceschi, A. Patocchi, and C.-E. Durel, “Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL,” Genome, vol. 51, no. 8, pp. 657–667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. C.-E. Durel, “Genetic localisation of new major and minor pest and disease factors in the apple genome,” in Proceedings of the 3rd Rosaceae Genomics Conference, Napier, New Zealand, March 2006, abstract OP5.
  67. F. S. Cheng, N. F. Weeden, S. K. Brown et al., “Development of a DNA marker for Vm, a gene conferring resistance to apple scab,” Genome, vol. 41, pp. 208–214, 1998. View at Google Scholar
  68. E. Belfanti, E. Silfverberg-Dilworth, S. Tartarini et al., “The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 3, pp. 886–890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Xu and S. S. Korban, “A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease,” Genetics, vol. 162, no. 4, pp. 1995–2006, 2002. View at Google Scholar · View at Scopus
  70. B. A. Vinatzer, A. Patocchi, L. Gianfranceschi et al., “Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance,” Molecular Plant-Microbe Interactions, vol. 14, no. 4, pp. 508–515, 2001. View at Google Scholar · View at Scopus
  71. I. Szankowski, S. Waidmann, J. Degenhardt et al., “Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths,” Tree Genetics and Genomes, vol. 5, no. 2, pp. 349–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. S. G. Joshi, J. M. Soriano, A. Kortstee et al., “Development of cisgenic apples with durable resistance to apple scab,” Acta Horticulturae, vol. 839, pp. 403–406, 2009. View at Google Scholar
  73. E. Silfverberg-Dilworth, A. Patocchi, E. Belfanti et al., “HcrVf2 introduced into Gala confers race-specific scab resistance,” in Proceedings of the Plant and Animal Genome XIII Conference, San Diego, Calif, USA, 2005, abstract P501.
  74. R. Paris, L. Dondini, S. Tartarini, D. Bastia, V. Mantovani, and S. Sansavini, “An optimized cDNA-AFLP protocol for the identification of TDFs involved in the Malus-Venturia inaequalis interaction,” Acta Horticulturae, vol. 814, pp. 841–844, 2009. View at Google Scholar · View at Scopus
  75. M. Komjanc, S. Festi, L. Rizzotti, L. Cattivelli, F. Cervone, and G. De Lorenzo, “A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by Venturia inaequalis infection and salicylic acid treatment,” Plant Molecular Biology, vol. 40, no. 6, pp. 945–957, 1999. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Xu and S. S. Korban, “Somatic variation plays a key role in the evolution of the Vf gene family residing in the Vf locus that confers resistance to apple scab disease,” Molecular Phylogenetics and Evolution, vol. 32, no. 1, pp. 57–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Malnoy, M. Xu, E. Borejsza-Wysocka, S. S. Korban, and H. S. Aldwinckle, “Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease,” Molecular Plant-Microbe Interactions, vol. 21, no. 4, pp. 448–458, 2008. View at Publisher · View at Google Scholar · View at Scopus