Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009, Article ID 742936, 7 pages
http://dx.doi.org/10.1155/2009/742936
Research Article

Rottlerin Inhibits ROS Formation and Prevents NF B Activation in MCF-7 and HT-29 Cells

1Dipartimento di Fisiologia, University of Siena, via Aldo Moro, 7 - 53100 Siena, Italy
2Dipartimento ISAC, Sezione Chimica, via Brecce Bianche, Università Politecnica delle Marche, I-60131 Ancona, Italy
3Department of Cytokinetics, Institute of Biophysics AS CR, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
4Dipartimento di Scienze Biomediche, University of Siena, via Aldo Moro, 7 - 53100 Siena, Italy
5Department of Food and Nutrition, Kyung Hee University, 130-701 Seoul, Republic of Korea

Received 20 July 2009; Revised 9 October 2009; Accepted 5 November 2009

Academic Editor: Stelvio M. Bandiera

Copyright © 2009 Emanuela Maioli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Rottlerin, a polyphenol isolated from Mallotus Philippinensis, has been recently used as a selective inhibitor of PKC , although it can inhibit many kinases and has several biological effects. Among them, we recently found that Rottlerin inhibits the Nuclear Factor B (NF B), activated by either phorbol esters or . Because of the redox sensitivity of NF B and on the basis of Rottlerin antioxidant property, we hypothesized that Rottlerin could prevent NF B activation acting as a free radicals scavenger, as other natural polyphenols. The current study confirms the antioxidant property of Rottlerin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in vitro and against oxidative stress induced by and by menadione in culture cells. We also demonstrate that Rottlerin prevents TNF -dependent NF B activation in MCF-7 cells and in HT-29 cells transfected with the NF B-driven plasmid pBIIX-LUC, suggesting that Rottlerin can inhibit NF B via several pathways and in several cell types.