Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009, Article ID 834239, 10 pages
http://dx.doi.org/10.1155/2009/834239
Research Article

50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems

1Department of Biology M.C.A., University of Camerino, 62032 Camerino (MC), Italy
2Institute of Neurobiology and Molecular Medicine, Division of Medicine, CNR, 00143 Rome, Italy
3Istituto Superiore Prevenzione e Sicurezza Lavoro (ISPESL), Division of Venice, 30172 Venezia, Italy

Received 26 February 2009; Revised 14 May 2009; Accepted 5 June 2009

Academic Editor: Francesca Cutruzzolà

Copyright © 2009 A. M. Eleuteri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Lacy-Hulbert, J. C. Metcalfe, and R. Hesketh, “Biological responses to electromagnetic fields,” The FASEB Journal, vol. 12, no. 6, pp. 395–420, 1998. View at Google Scholar
  2. R. Saunders, “Static magnetic fields: animal studies,” Progress in Biophysics and Molecular Biology, vol. 87, no. 2-3, pp. 225–239, 2005. View at Publisher · View at Google Scholar
  3. F. Regoli, S. Gorbi, N. MacHella et al., “Pro-oxidant effects of extremely low frequency electromagnetic fields in the land snail Helix aspersa,” Free Radical Biology and Medicine, vol. 39, no. 12, pp. 1620–1628, 2005. View at Publisher · View at Google Scholar
  4. J. Rollwitz, M. Lupke, and M. Simkó, “Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages,” Biochimica et Biophysica Acta, vol. 1674, no. 3, pp. 231–238, 2004. View at Publisher · View at Google Scholar
  5. F. I. Wolf, A. Torsello, B. Tedesco et al., “50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism,” Biochimica et Biophysica Acta, vol. 1743, no. 1-2, pp. 120–129, 2005. View at Publisher · View at Google Scholar
  6. F. L. Cozens and J. C. Scaiano, “A comparative study of magnetic field effects on the dynamics of geminate and random radical pair processes in micelles,” Journal of the American Chemical Society, vol. 115, no. 12, pp. 5204–5211, 1993. View at Google Scholar
  7. S. Roy, Y. Noda, V. Eckert et al., “The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1?mT (60?Hz) magnetic field,” FEBS Letters, vol. 376, no. 3, pp. 164–166, 1995. View at Publisher · View at Google Scholar
  8. W. Löschera and R. P. Liburdy, “Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields,” Mutation Research, vol. 410, no. 2, pp. 185–220, 1998. View at Publisher · View at Google Scholar
  9. A. Lisi, A. Foletti, M. Ledda et al., “Extremely low frequency 7?Hz 100?microT electromagnetic radiation promotes differentiation in the human epithelial cell line HaCaT,” Electromagnetic Biology and Medicine, vol. 25, no. 4, pp. 269–280, 2006. View at Publisher · View at Google Scholar
  10. M. Feychting, A. Ahlbom, and L. Kheifets, “EMF and health,” Annual Review of Public Health, vol. 26, pp. 165–189, 2005. View at Publisher · View at Google Scholar
  11. I. M. o. t. E. o. C. International Agency for Research on Cancer, “Non-ionizing radiation—part 1: static and extremely low-frequency (ELF) electric and magnetic fields,” 2002. View at Google Scholar
  12. H. Wu, K. Ren, W. Zhao, G. E. Baojian, and S. Peng, “Effect of electromagnetic fields on proliferation and differentiation of cultured mouse bone marrow mesenchymal stem cells,” Journal of Huazhong University of Science and Technology, vol. 25, no. 2, pp. 185–187, 2005. View at Google Scholar
  13. K. Zwirska-Korczala, J. Jochem, M. Adamczyk-Sowa et al., “Effect of extremely low frequency electromagnetic fields on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes—an in vitro study,” Journal of Physiology and Pharmacology, vol. 56, supplement 6, pp. 101–108, 2005. View at Google Scholar
  14. I. Nordenson, K. H. Mild, G. Andersson, and M. Sandström, “Chromosomal aberrations in human amniotic cells after intermittent exposure to fifty hertz magnetic fields,” Bioelectromagnetics, vol. 15, no. 4, pp. 293–301, 1994. View at Google Scholar
  15. M. Simkó, R. Kriehuber, D. G. Weiss, and R. A. Luben, “Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines,” Bioelectromagnetics, vol. 19, no. 2, pp. 85–91, 1998. View at Google Scholar
  16. H. Lai and N. P. Singh, “Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells,” Bioelectromagnetics, vol. 18, no. 2, pp. 156–165, 1997. View at Google Scholar
  17. O. Holian, R. D. Astumian, R. C. Lee, H. M. Reyes, B. M. Attar, and R. J. Walter, “Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields,” Bioelectromagnetics, vol. 17, no. 6, pp. 504–509, 1996. View at Google Scholar
  18. S. C. Miller and M. J. Furniss, “Bruton's tyrosine kinase activity and inositol 1,4,5-trisphosphate production are not altered in DT40 lymphoma B cells exposed to power line frequency magnetic fields,” The Journal of Biological Chemistry, vol. 273, no. 49, pp. 32618–32626, 1998. View at Publisher · View at Google Scholar
  19. A. Morelli, S. Ravera, I. Panfoli, and I. M. Pepe, “Effects of extremely low frequency electromagnetic fields on membrane-associated enzymes,” Archives of Biochemistry and Biophysics, vol. 441, no. 2, pp. 191–198, 2005. View at Publisher · View at Google Scholar
  20. F. Salamino, R. Minafra, V. Grano et al., “Effect of extremely low frequency magnetic fields on calpain activation,” Bioelectromagnetics, vol. 27, no. 1, pp. 43–50, 2006. View at Publisher · View at Google Scholar
  21. J. Basbous, I. Jariel-Encontre, T. Gomard, G. Bossis, and M. Piechaczyk, “Ubiquitin-independent-versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: is there a unique answer?” Biochimie, vol. 90, no. 2, pp. 296–305, 2008. View at Publisher · View at Google Scholar
  22. B. Li and Q. P. Dou, “Bax degradation by the ubiquitin proteasome-dependent pathway: involvement in tumor survival and progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 3850–3855, 2000. View at Google Scholar
  23. Y. Yang, C.-C. H. Li, and A. M. Weissman, “Regulating the p53 system through ubiquitination,” Oncogene, vol. 23, no. 11, pp. 2096–2106, 2004. View at Publisher · View at Google Scholar
  24. H. C. Drexler, “The role of p27Kip1 in proteasome inhibitor induced apoptosis,” Cell Cycle, vol. 2, no. 5, pp. 438–441, 2003. View at Google Scholar
  25. A. J. Rivett, “Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases,” The Journal of Biological Chemistry, vol. 260, no. 1, pp. 300–305, 1985. View at Google Scholar
  26. T. Grune, “Oxidative stress, aging and the proteasomal system,” Biogerontology, vol. 1, no. 1, pp. 31–40, 2000. View at Google Scholar
  27. T. Grune, K. Merker, G. Sandig, and K. J. A. Davies, “Selective degradation of oxidatively modified protein substrates by the proteasome,” Biochemical and Biophysical Research Communications, vol. 305, no. 3, pp. 709–718, 2003. View at Publisher · View at Google Scholar
  28. T. Jung and T. Grune, “The proteasome and its role in the degradation of oxidized proteins,” IUBMB Life, vol. 60, no. 11, pp. 743–752, 2008. View at Publisher · View at Google Scholar
  29. J. Lowe, D. Stock, B. Jap, P. Zwickl, W. Baumeister, and R. Huber, “Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution,” Science, vol. 268, no. 5210, pp. 533–539, 1995. View at Google Scholar
  30. C. Cardozo, “Catalytic components of the bovine pituitary multicatalytic proteinase complex (proteasome),” Enzyme and Protein, vol. 47, no. 4–6, pp. 296–305, 1993. View at Google Scholar
  31. M. Orlowski, “The multicatalytic proteinase complex, a major extralysosomal proteolytic system,” Biochemistry, vol. 29, no. 45, pp. 10289–10297, 1990. View at Google Scholar
  32. M. Orlowski and S. Wilk, “Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex,” Archives of Biochemistry and Biophysics, vol. 383, no. 1, pp. 1–16, 2000. View at Google Scholar
  33. M. Orlowski, M. Cardozo C., and C. Michaud, “Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids,” Biochemistry, vol. 32, no. 6, pp. 1563–1572, 1993. View at Google Scholar
  34. A. Pettinari, M. Amici, M. Cuccioloni, M. Angeletti, E. Fioretti, and A. M. Eleuteri, “Effect of polyphenolic compounds on the proteolytic activities of constitutive and immuno-proteasomes,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 121–129, 2006. View at Publisher · View at Google Scholar
  35. S. Nam, D. M. Smith, and Q. P. Dou, “Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo,” The Journal of Biological Chemistry, vol. 276, no. 16, pp. 13322–13330, 2001. View at Publisher · View at Google Scholar
  36. S.-J. Lee and K.-W. Lee, “Protective effect of (-)-epigallocatechin gallate against advanced glycation endproducts-induced injury in neuronal cells,” Biological and Pharmaceutical Bulletin, vol. 30, no. 8, pp. 1369–1373, 2007. View at Publisher · View at Google Scholar
  37. M. Glei and B. L. Pool-Zobel, “The main catechin of green tea, (-)-epigallocatechin-3-gallate (EGCG), reduces bleomycin-induced DNA damage in human leucocytes,” Toxicology in Vitro, vol. 20, no. 3, pp. 295–300, 2006. View at Publisher · View at Google Scholar
  38. S. Costa, A. Utan, R. Cervellati, E. Speroni, and M. C. Guerra, “Catechins: natural free-radical scavengers against ochratoxin A-induced cell damage in a pig kidney cell line (LLC-PK1),” Food and Chemical Toxicology, vol. 45, no. 10, pp. 1910–1917, 2007. View at Publisher · View at Google Scholar
  39. C. Thephinlap, S. Ounjaijean, U. Khansuwan, S. Fucharoen, J. B. Porter, and S. Srichairatanakool, “Epigallocatechin-3-gallate and epicatechin-3-gallate from green tea decrease plasma non-transferrin bound iron and erythrocyte oxidative stress,” Medicinal Chemistry, vol. 3, no. 3, pp. 289–296, 2007. View at Publisher · View at Google Scholar
  40. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar
  41. N. Santoro, A. Lisi, D. Pozzi, E. Pasquali, A. Serafino, and S. Grimaldi, “Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji),” Biochimica et Biophysica Acta, vol. 1357, no. 3, pp. 281–290, 1997. View at Publisher · View at Google Scholar
  42. F. W. Holtsberg, M. R. Steiner, J. N. Keller, R. J. Mark, M. P. Mattson, and S. M. Steiner, “Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons,” Journal of Neurochemistry, vol. 70, no. 1, pp. 66–76, 1998. View at Google Scholar
  43. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” The Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar
  44. A. M. Eleuteri, M. Angeletti, G. Lupidi, R. Tacconi, L. Bini, and E. Fioretti, “Isolation and characterization of bovine thymus multicatalytic proteinase complex,” Protein Expression and Purification, vol. 18, no. 2, pp. 160–168, 2000. View at Publisher · View at Google Scholar
  45. S. Wilk and M. Orlowski, “Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex,” Journal of Neurochemistry, vol. 40, no. 3, pp. 842–849, 1983. View at Google Scholar
  46. J. Almenoff and M. Orlowski, “Membrane-bound kidney neutral metalloendopeptidase: interaction with synthetic substrates, natural peptides, and inhibitors,” Biochemistry, vol. 22, no. 3, pp. 590–599, 1983. View at Google Scholar
  47. G. Pfleiderer, “Isolation of an aminopeptidase from kidney particles,” in Methods Enzymology, pp. 514–521, 1970. View at Google Scholar
  48. L. R. Dick, A. A. Cruikshank, L. Grenier, F. D. Melandri, S. L. Nunes, and R. L. Stein, “Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for closto-lactacystin β-lactone,” The Journal of Biological Chemistry, vol. 271, no. 13, pp. 7273–7276, 1996. View at Google Scholar
  49. A. M. Eleuteri, R. A. Kohanski, C. Cardozo, and M. Orlowski, “Bovine spleen multicatalytic proteinase complex (proteasome). Replacement of X, Y, and Z subunits by LMP7, LMP2, and MECL1 and changes in properties and specificity,” The Journal of Biological Chemistry, vol. 272, no. 18, pp. 11824–11831, 1997. View at Publisher · View at Google Scholar
  50. C. Marchini, M. Angeletti, A. M. Eleuteri, A. Fedeli, and E. Fioretti, “Aspirin modulates LPS-induced nitric oxide release in rat glial cells,” Neuroscience Letters, vol. 381, no. 1-2, pp. 86–91, 2005. View at Publisher · View at Google Scholar
  51. R. R. Sokal and F. J. Rohlf, Biometry: The Principles and Practice of Statistics in Biological Research, W. H. Freeman, New York, NY, USA, 1994.
  52. H. Raza and A. John, “In vitro effects of tea polyphenols on redox metabolism, oxidative stress, and apoptosis in PC12 cells,” Annals of the New York Academy of Sciences, vol. 1138, pp. 358–365, 2008. View at Publisher · View at Google Scholar
  53. K. J. A. Davies, “Degradation of oxidized proteins by the 20S proteasome,” Biochimie, vol. 83, no. 3-4, pp. 301–310, 2001. View at Publisher · View at Google Scholar
  54. K. J. A. Davies and R. Shringarpure, “Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseases,” Neurology, vol. 66, no. 2, supplement 1, pp. S93–S96, 2006. View at Google Scholar
  55. C. R. McCreary, S. J. Dixon, L. J. Fraher, J. J. L. Carson, and F. S. Prato, “Real-time measurement of cytosolic free calcium concentration in Jurkat cells during ELF magnetic field and evaluation of the role of cell cycle,” Bioelectromagnetics, vol. 27, no. 5, pp. 354–364, 2006. View at Publisher · View at Google Scholar
  56. E. Lindstrom, P. Lindstrom, A. Berglund, K. H. Mild, and E. Lundgren, “Intracellular calcium oscillations induced in a T-cell line by a weak 50 Hz magnetic field,” Journal of Cellular Physiology, vol. 156, no. 2, pp. 395–398, 1993. View at Google Scholar
  57. A. Förster, F. G. Whitby, and C. P. Hill, “The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation,” The EMBO Journal, vol. 22, no. 17, pp. 4356–4364, 2003. View at Publisher · View at Google Scholar
  58. Y. K. Reshetnyak, R. P. Kitson, M. Lu, and R. H. Goldfarb, “Conformational and enzymatic changes of 20S proteasome of rat natural killer cells induced by mono- and divalent cations,” Journal of Structural Biology, vol. 145, no. 3, pp. 263–271, 2004. View at Publisher · View at Google Scholar
  59. M. Matsuishi and A. Okitani, “Proteasome from rabbit skeletal muscle: some properties and effects on muscle proteins,” Meat Science, vol. 45, no. 4, pp. 451–462, 1997. View at Google Scholar
  60. R. Palumbo, D. Capasso, F. Brescia et al., “Effects on apoptosis and reactive oxygen species formation by Jurkat cells exposed to 50?Hz electromagnetic fields,” Bioelectromagnetics, vol. 27, no. 2, pp. 159–162, 2006. View at Publisher · View at Google Scholar
  61. M. T. Santini, A. Ferrante, G. Rainaldi, P. Indovina, and P. L. Indovina, “Extremely low frequency (ELF) magnetic fields and apoptosis: a review,” International Journal of Radiation Biology, vol. 81, no. 1, pp. 1–11, 2005. View at Publisher · View at Google Scholar
  62. B. Holmberg, “Magnetic fields and cancer: animal and cellular evidence—an overview,” Environmental Health Perspectives, vol. 103, supplement 2, pp. 63–67, 1995. View at Google Scholar
  63. D. Richard, S. Lange, T. Viergutz, R. Kriehuber, D. G. Weiss, and S. Myrtill, “Influence of 50 Hz electromagnetic fields in combination with a tumour promoting phorbol ester on protein kinase C and cell cycle in human cells,” Molecular and Cellular Biochemistry, vol. 232, no. 1-2, pp. 133–141, 2002. View at Publisher · View at Google Scholar
  64. K. J. Alzayady and R. J. H. Wojcikiewicz, “The role of Ca2+ in triggering inositol 1,4,5-trisphosphate receptor ubiquitination,” Biochemical Journal, vol. 392, no. 3, pp. 601–606, 2005. View at Publisher · View at Google Scholar
  65. C. Li, X. Wang, H. Vais, C. B. Thompson, J. K. Foskett, and C. White, “Apoptosis regulation by Bcl-xL modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 30, pp. 12565–12570, 2007. View at Publisher · View at Google Scholar