Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009, Article ID 901079, 7 pages
http://dx.doi.org/10.1155/2009/901079
Methodology Report

Improved Coinfection with Amphotropic Pseudotyped Retroviral Vectors

1Institute of Biotechnology, Northwest A&F University, Yangling, Shaanxi 712100, China
2Department of Physiology and Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA

Received 2 October 2008; Revised 8 February 2009; Accepted 11 March 2009

Academic Editor: Gerald Schumann

Copyright © 2009 Yuehong Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar
  2. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar
  3. S. Morita, T. Kojima, and T. Kitamura, “Plat-E: an efficient and stable system for transient packaging of retroviruses,” Gene Therapy, vol. 7, no. 12, pp. 1063–1066, 2000. View at Publisher · View at Google Scholar
  4. T. Kitamura, Y. Koshino, F. Shibata et al., “Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics,” Experimental Hematology, vol. 31, no. 11, pp. 1007–1014, 2003. View at Publisher · View at Google Scholar
  5. S. Swift, J. Lorens, P. Achacoso, and G. P. Nolan, “Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems,” in Current Protocols in Immunology, J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, and W. Strober, Eds., pp. 10.17.14–10.17.29, John Wiley & Sons, New York, NY, USA, 1999. View at Google Scholar
  6. S. Wotherspoon, A. Dolnikov, G. Symonds, and R. Nordon, “Susceptibility of cell populations to transduction by retroviral vectors,” Journal of Virology, vol. 78, no. 10, pp. 5097–5102, 2004. View at Publisher · View at Google Scholar
  7. N. E. Bowles, R. C. Eisensmith, R. Mohuiddin, M. Pyron, and S. L. C. Woo, “A simple and efficient method for the concentration and purification of recombinant retrovirus for increased hepatocyte transduction in vivo,” Human Gene Therapy, vol. 7, no. 14, pp. 1735–1742, 1996. View at Publisher · View at Google Scholar
  8. B. L. Strang, Y. Ikeda, F.-L. Cosset, M. K. L. Collins, and Y. Takeuchi, “Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells,” Gene Therapy, vol. 11, no. 7, pp. 591–598, 2004. View at Publisher · View at Google Scholar
  9. J. C. Burns, T. Friedmann, W. Driever, M. Burrascano, and J.-K. Yee, “Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 8033–8037, 1993. View at Publisher · View at Google Scholar
  10. N. Landázuri, M. Gupta, and J. M. Le Doux, “Rapid concentration and purification of retrovirus by flocculation with Polybrene,” Journal of Biotechnology, vol. 125, no. 4, pp. 529–539, 2006. View at Publisher · View at Google Scholar
  11. N. Landázuri and J. M. Le Doux, “Complexation with chondroitin sulfate C and polybrene rapidly purifies retrovirus from inhibitors of transduction and substantially enhances gene transfer,” Biotechnology and Bioengineering, vol. 93, no. 1, pp. 146–158, 2006. View at Publisher · View at Google Scholar
  12. N. Landázuri and J. M. Le Doux, “Amphotropic retrovirus transduction is inhibited by high doses of particle-associated envelope proteins,” Biotechnology and Bioengineering, vol. 99, no. 5, pp. 1205–1215, 2008. View at Publisher · View at Google Scholar
  13. K. Toyoshima and P. K. Vogt, “Enhancement and inhibition of avian sarcoma viruses by polycations and polyanions,” Virology, vol. 38, no. 3, pp. 414–426, 1969. View at Publisher · View at Google Scholar
  14. A. B. Bahnsonz, J. T. Dunigan, B. E. Baysal et al., “Centrifugal enhancement of retroviral mediated gene transfer,” Journal of Virological Methods, vol. 54, no. 2-3, pp. 131–143, 1995. View at Publisher · View at Google Scholar
  15. C. G. Bailey and J. E. J. Rasko, “Autofluorescent proteins for flow cytometry,” Methods in Molecular Biology, vol. 411, pp. 99–110, 2007. View at Publisher · View at Google Scholar
  16. W. Pear, “Transient transfection methods for preparation of high-titer retroviral supernatants,” in Current Protocols in Molecular Biology, F. M. Ausubel, R. Brent, R. E. Kingston et al., Eds., pp. 9.11.1–9.11.18, John Wiley & Sons, New York, NY, USA, 1996. View at Google Scholar
  17. I.-H. Park, R. Zhao, J. A. West et al., “Reprogramming of human somatic cells to pluripotency with defined factors,” Nature, vol. 451, no. 7175, pp. 141–146, 2008. View at Publisher · View at Google Scholar
  18. I.-H. Park, N. Arora, H. Huo et al., “Disease-specific induced pluripotent stem cells,” Cell, vol. 134, no. 5, pp. 877–886, 2008. View at Publisher · View at Google Scholar
  19. N. Maherali, R. Sridharan, W. Xie et al., “Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution,” Cell Stem Cell, vol. 1, no. 1, pp. 55–70, 2007. View at Publisher · View at Google Scholar
  20. H. Masaki, T. Ishikawa, S. Takahashi et al., “Heterogeneity of pluripotent marker gene expression in colonies generated in human iPS cell induction culture,” Stem Cell Research, vol. 1, no. 2, pp. 105–115, 2007. View at Publisher · View at Google Scholar
  21. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar
  22. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar
  23. Y. Shi, C. Desponts, J. T. Do, H. S. Hahm, H. R. Schöler, and S. Ding, “Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds,” Cell Stem Cell, vol. 3, no. 5, pp. 568–574, 2008. View at Publisher · View at Google Scholar