Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 981963, 8 pages
http://dx.doi.org/10.1155/2009/981963
Research Article

Curcumin Decreased Oxidative Stress, Inhibited NF- B Activation, and Improved Liver Pathology in Ethanol-Induced Liver Injury in Rats

1Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
2Department of Dietatic, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
3Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Received 23 February 2009; Accepted 1 May 2009

Academic Editor: Stelvio M. Bandiera

Copyright © 2009 Suchittra Samuhasaneeto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Tome and M. R. Lucey, “Review article: current management of alcoholic liver disease,” Alimentary Pharmacology and Therapeutics, vol. 19, no. 7, pp. 707–714, 2004. View at Publisher · View at Google Scholar
  2. S. K. Das and D. M. Vasudevan, “Alcohol-induced oxidative stress,” Life Sciences, vol. 81, no. 3, pp. 177–187, 2007. View at Publisher · View at Google Scholar
  3. C. S. Lieber, “Pathogenesis and treatment of alcoholic liver disease: progress over the last 50 years,” Roczniki Akademii Medycznej w Białymstoku, vol. 50, pp. 7–20, 2005. View at Google Scholar
  4. C. S. Lieber, “Alcohol and the liver: metabolism of alcohol and its role in hepatic and extrahepatic diseases,” Mount Sinai Journal of Medicine, vol. 67, no. 1, pp. 84–94, 2000. View at Google Scholar
  5. C. A. Casey, A. A. Nanji, A. I. Cederbaum, M. Adachi, and T. Takahashi, “Alcoholic liver disease and apoptosis,” Alcoholism: Clinical and Experimental Research, vol. 25, no. 5, pp. 49S–53S, 2001. View at Google Scholar
  6. H. L. Pahl, “Activators and target genes of Rel/NF-κB transcription factors,” Oncogene, vol. 18, no. 49, pp. 6853–6866, 1999. View at Google Scholar
  7. Y. Yamamoto and R. B. Gaynor, “Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer,” Journal of Clinical Investigation, vol. 107, no. 2, pp. 135–142, 2001. View at Google Scholar
  8. T. D. Gilmore, “The Rel/NF-κB signal transduction pathway: introduction,” Oncogene, vol. 18, no. 49, pp. 6842–6844, 1999. View at Google Scholar
  9. A. A. Nanji, K. Jokelainen, A. Rahemtulla et al., “Activation of nuclear factor ?B and cytokine inbalance in experimental alcoholic liver disease in the rat,” Hepatology, vol. 30, no. 4, pp. 933–943, 1999. View at Google Scholar
  10. A. A. Nanji, K. Jokelainen, G. L. Tipoe, A. Rahemtulla, P. Thomas, and A. J. Dannenberg, “Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-κB-dependent genes,” American Journal of Physiology, vol. 284, no. 2, pp. G321–G327, 2003. View at Google Scholar
  11. K. Jokelainen, L. A. Reinke, and A. A. Nanji, “NF-κB activation is associated with free radical generation and endotoxemia and precedes pathological liver injury in experimental alcoholic liver disease,” Cytokine, vol. 16, no. 1, pp. 36–39, 2001. View at Publisher · View at Google Scholar
  12. G.-J. Yuan, X.-R. Zhou, Z.-J. Gong, P. Zhang, X.-M. Sun, and S.-H. Zheng, “Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury,” World Journal of Gastroenterology, vol. 12, no. 15, pp. 2375–2381, 2006. View at Google Scholar
  13. K. L. Houseknecht, B. M. Cole, and P. J. Steele, “Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands: a review,” Domestic Animal Endocrinology, vol. 22, no. 1, pp. 1–23, 2002. View at Publisher · View at Google Scholar
  14. C.-Y. Zhao, L.-L. Jiang, L. Li, Z.-J. Deng, B.-L. Liang, and J.-M. Li, “Peroxisome proliferator activated receptor-γ in pathogenesis of experimental fatty liver disease,” World Journal of Gastroenterology, vol. 10, no. 9, pp. 1329–1332, 2004. View at Google Scholar
  15. J. Xu, Y. Fu, and A. Chen, “Activation of peroxisome proliferator-activated receptor-γ contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth,” American Journal of Physiology, vol. 285, no. 1, pp. G20–G30, 2003. View at Google Scholar
  16. N. Enomoto, S. Yamashina, H. Kono et al., “Development of a new, simple rat model of early alcohol-induced liver injury based on sensitization of Kupffer cells,” Hepatology, vol. 29, no. 6, pp. 1680–1689, 1999. View at Publisher · View at Google Scholar
  17. A. Colantoni, R. Idilman, N. De Maria et al., “Hepatic apoptosis and proliferation in male and female rats fed alcohol: role of cytokines,” Alcoholism: Clinical and Experimental Research, vol. 27, no. 7, pp. 1184–1189, 2003. View at Publisher · View at Google Scholar
  18. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Google Scholar
  19. C. C. Winterbourn, R. E. Hawkins, M. Brian, and R. W. Carrell, “The estimation of red cell superoxide dismutase activity,” Journal of Laboratory and Clinical Medicine, vol. 85, no. 2, pp. 337–341, 1975. View at Google Scholar
  20. O. H. Lowry, N. J. Rosebrough, and A. L. Farr, “Protein measurement with the folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, pp. 265–273, 1951. View at Google Scholar
  21. D. A. Brenner and S. Sigmund, “Pathogenesis of alcoholic hepatitis,” Journal of Gastroenterology and Hepatology, vol. 19, pp. S229–S235, 2004. View at Google Scholar
  22. C. S. Lieber, “Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998): a review,” Alcoholism: Clinical and Experimental Research, vol. 23, no. 6, pp. 991–1007, 1999. View at Google Scholar
  23. L. Gaté, J. Paul, G. N. Ba, K. D. Tew, and H. Tapiero, “Oxidative stress induced in pathologies: the role of antioxidants,” Biomedicine & Pharmacotherapy, vol. 53, no. 4, pp. 169–180, 1999. View at Publisher · View at Google Scholar
  24. H. Rouach, V. Fataccioli, M. Gentil, S. W. French, M. Morimoto, and R. Nordmann, “Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology,” Hepatology, vol. 25, no. 2, pp. 351–355, 1997. View at Google Scholar
  25. R. Polavarapu, D. R. Spitz, J. E. Sim et al., “Increased lipid peroxidation and impaired antioxidant enzyme function is associated with pathological liver injury in experimental alcoholic liver disease in rats fed diets high in corn oil and fish oil,” Hepatology, vol. 27, no. 5, pp. 1317–1323, 1998. View at Publisher · View at Google Scholar
  26. E. A. Meagher, O. P. Barry, A. Burke et al., “Alcohol-induced generation of lipid peroxidation products in humans,” Journal of Clinical Investigation, vol. 104, no. 6, pp. 805–813, 1999. View at Google Scholar
  27. J. Chaudier and R. Ferrari-Iliou, “Intracellular antioxidants: from chemical to biochemical mechanisms,” Food and Chemical Toxicology, vol. 37, no. 9-10, pp. 949–962, 1999. View at Publisher · View at Google Scholar
  28. S.-C. Yang, C.-C. Huang, J.-S. Chu, and J.-R. Chen, “Effects of β-carotene on cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats,” British Journal of Nutrition, vol. 92, no. 2, pp. 209–215, 2004. View at Publisher · View at Google Scholar
  29. N. Sreejayan and M. N. A. Rao, “Free radical scavenging activity of curcuminoids,” Arzneimittel-Forschung, vol. 46, no. 2, pp. 169–171, 1996. View at Google Scholar
  30. N. Sreejayan and M. N. A. Rao, “Nitric oxide scavenging by curcuminoids,” Journal of Pharmacy and Pharmacology, vol. 49, no. 1, pp. 105–107, 1997. View at Google Scholar
  31. A. C. Reddy and B. R. Lokesh, “Effect of curcumin and eugenol on iron-induced hepatic toxicity in rats,” Toxicology, vol. 107, no. 1, pp. 39–45, 1996. View at Publisher · View at Google Scholar
  32. E.-J. Park, C. H. Jeon, G. Ko, J. Kim, and D. H. Sohn, “Protective effect of curcumin in rat liver injury induced by carbon tetrachloride,” Journal of Pharmacy and Pharmacology, vol. 52, no. 4, pp. 437–440, 2000. View at Google Scholar
  33. S. Natori, C. Rust, L. M. Stadheim, A. Srinivasan, L. J. Burgart, and G. J. Gores, “Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis,” Journal of Hepatology, vol. 34, no. 2, pp. 248–253, 2001. View at Publisher · View at Google Scholar
  34. W.-P. Jin, X.-Q. Quan, F.-P. Meng, X.-D. Cui, and H.-J. Piao, “Relationship among hepatocyte apoptosis, P450 2E1 and oxidative stress in alcoholic liver disease of rats,” Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, vol. 19, no. 7, pp. 419–421, 2007. View at Google Scholar
  35. I. V. Deaciuc, N. B. D'Souza, W. J. S. de Villiers et al., “Inhibition of caspases in vivo protects the rat liver against alcohol-induced sensitization to bacterial lipopolysaccharide,” Alcoholism: Clinical and Experimental Research, vol. 25, no. 6, pp. 935–943, 2001. View at Google Scholar
  36. M. H. Ross, G. I. Kaye, and W. Pawlina, Histology: A Text and Atlas, Lippincott William & Wilkins, Philadelphia, Pa, USA, 2003.
  37. A. Galli, D. Crabb, D. Price et al., “Peroxisome proliferator-activated receptor ? transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells,” Hepatology, vol. 31, no. 1, pp. 101–108, 2000. View at Google Scholar
  38. T. Tanaka, H. Itoh, K. Doi et al., “Down regulation of peroxisome proliferator-activated receptor? expression by inflammatory cytokines and its reversal by thiazolidinediones,” Diabetologia, vol. 42, no. 6, pp. 702–710, 1999. View at Publisher · View at Google Scholar
  39. T. Miyahara, L. Schrum, R. Rippe et al., “Peroxisome proliferator-activated receptors and hepatic stellate cell activation,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 35715–35722, 2000. View at Publisher · View at Google Scholar