Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 101932, 7 pages
http://dx.doi.org/10.1155/2010/101932
Research Article

SAROTUP: Scanner and Reporter of Target-Unrelated Peptides

Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China

Received 30 September 2009; Accepted 29 January 2010

Academic Editor: Yongqun Oliver He

Copyright © 2010 Jian Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Smith, “Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface,” Science, vol. 228, no. 4705, pp. 1315–1317, 1985. View at Google Scholar · View at Scopus
  2. J. K. Scott and G. P. Smith, “Searching for peptide ligands with an epitope library,” Science, vol. 249, no. 4967, pp. 386–390, 1990. View at Google Scholar · View at Scopus
  3. A. H. Y. Tong, B. Drees, G. Nardelli et al., “A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules,” Science, vol. 295, no. 5553, pp. 321–324, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Thom, A. C. Cockroft, A. G. Buchanan et al., “Probing a protein-protein interaction by in vitro evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 20, pp. 7619–7624, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. F. Wang and M. Yu, “Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics,” Current Drug Targets, vol. 5, no. 1, pp. 1–15, 2004. View at Google Scholar · View at Scopus
  6. A. B. Riemer and E. Jensen-Jarolim, “Mimotope vaccines: epitope mimics induce anti-cancer antibodies,” Immunology Letters, vol. 113, no. 1, pp. 1–5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. V. A. Petrenko, “Evolution of phage display: from bioactive peptides to bioselective nanomaterials,” Expert Opinion on Drug Delivery, vol. 5, no. 8, pp. 825–836, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zhao, Z. Liu, and D. Fan, “Overview of mimotopes and related strategies in tumor vaccine development,” Expert Review of Vaccines, vol. 7, no. 10, pp. 1547–1555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Thie, T. Meyer, T. Schirrmann, M. Hust, and S. Dubel, “Phage display derived therapeutic antibodies,” Current Pharmaceutical Biotechnology, vol. 9, no. 6, pp. 439–446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Knittelfelder, A. B. Riemer, and E. Jensen-Jarolim, “Mimotope vaccination—from allergy to cancer,” Expert Opinion on Biological Therapy, vol. 9, no. 4, pp. 493–506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. M. Geysen, S. J. Rodda, and T. J. Mason, “A priori delineation of a peptide which mimics a discontinuous antigenic determinant,” Molecular Immunology, vol. 23, no. 7, pp. 709–715, 1986. View at Google Scholar · View at Scopus
  12. A. Menendez and J. K. Scott, “The nature of target-unrelated peptides recovered in the screening of phage-displayed random peptide libraries with antibodies,” Analytical Biochemistry, vol. 336, no. 2, pp. 145–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. L. A. Brammer, B. Bolduc, J. L. Kass, K. M. Felice, C. J. Noren, and M. F. Hall, “A target-unrelated peptide in an M13 phage display library traced to an advantageous mutation in the gene II ribosome-binding site,” Analytical Biochemistry, vol. 373, no. 1, pp. 88–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Huang, M. Xia, H. Lin, and F. Guo, “Information loss and noise inclusion risk in mimotope based epitope mapping,” in Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE '09), Beijing, China, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Enshell-Seijffers, D. Denisov, B. Groisman et al., “The mapping and reconstitution of a conformational discontinuous B-cell epitope of HIV-1,” Journal of Molecular Biology, vol. 334, no. 1, pp. 87–101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. B. M. Mumey, B. W. Bailey, B. Kirkpatrick, A. J. Jesaitis, T. Angel, and E. A. Dratz, “A new method for mapping discontinuous antibody epitopes to reveal structural features of proteins,” Journal of Computational Biology, vol. 10, no. 3-4, pp. 555–567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Halperin, H. Wolfson, and R. Nussinov, “SiteLight: binding-site prediction using phage display libraries,” Protein Science, vol. 12, no. 7, pp. 1344–1359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Schreiber, M. Humbert, A. Benz, and U. Dietrich, “3D-Epitope-Explorer (3DEX): localization of conformational epitopes within three-dimensional structures of proteins,” Journal of Computational Chemistry, vol. 26, no. 9, pp. 879–887, 2005. View at Google Scholar
  19. V. Moreau, C. Granier, S. Villard, D. Laune, and F. Molina, “Discontinuous epitope prediction based on mimotope analysis,” Bioinformatics, vol. 22, no. 9, pp. 1088–1095, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Huang, A. Gutteridge, W. Honda, and M. Kanehisa, “MIMOX: a web tool for phage display based epitope mapping,” BMC Bioinformatics, vol. 7, article 451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Mayrose, T. Shlomi, N. D. Rubinstein et al., “Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm,” Nucleic Acids Research, vol. 35, no. 1, pp. 69–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Mayrose, O. Penn, E. Erez et al., “Pepitope: epitope mapping from affinity-selected peptides,” Bioinformatics, vol. 23, no. 23, pp. 3244–3246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. X. Huang, Y. L. Bao, S. Y. Guo, Y. Wang, C. G. Zhou, and Y. X. Li, “Pep-3D-search: a method for B-cell epitope prediction based on mimotope analysis,” BMC Bioinformatics, vol. 9, article 538, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti et al., “The 20 years of PROSITE,” Nucleic Acids Research, vol. 36, database issue, pp. D245–D249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. M. Bublil, S. Yeger-Azuz, and J. M. Gershoni, “Computational prediction of the cross-reactive neutralizing epitope corresponding to the monoclonal antibody b12 specific for HIV-1 gp120,” FASEB Journal, vol. 20, no. 11, pp. 1762–1774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Tarnovitski, L. J. Matthews, J. Sui, J. M. Gershoni, and W. A. Marasco, “Mapping a neutralizing epitope on the SARS coronavirus spike protein: computational prediction based on affinity-selected peptides,” Journal of Molecular Biology, vol. 359, no. 1, pp. 190–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Huang and W. Honda, “CED: a conformational epitope database,” BMC Immunology, vol. 7, article 7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. A. Laskowski, “PDBsum new things,” Nucleic Acids Research, vol. 37, database issue, pp. D355–D359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. W. Roberts and J. W. Szostak, “RNA-peptide fusions for the in vitro selection of peptides and proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12297–12302, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Gold, “mRNA display: diversity matters during in vitro selection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 4825–4826, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Lipovsek and A. Pluckthun, “In-vitro protein evolution by ribosome display and mRNA display,” Journal of Immunological Methods, vol. 290, no. 1-2, pp. 51–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. E. T. Boder and K. D. Wittrup, “Yeast surface display for screening combinatorial polypeptide libraries,” Nature Biotechnology, vol. 15, no. 6, pp. 553–557, 1997. View at Google Scholar · View at Scopus
  33. S. Stahl and M. Uhlen, “Bacterial surface display: trends and progress,” Trends in Biotechnology, vol. 15, no. 5, pp. 185–192, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Georgiern, C. Stathopoulos, P. S. Daugherty, A. R. Nayak, B. L. Iverson, and R. Curtiss III, “Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines,” Nature Biotechnology, vol. 15, no. 1, pp. 29–34, 1997. View at Google Scholar
  35. P. Samuelson, E. Gunneriusson, P. A. Nygren, and S. Stahl, “Display of proteins on bacteria,” Journal of Biotechnology, vol. 96, no. 2, pp. 129–154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. B. Riemer, H. Kurz, M. Klinger, O. Scheiner, C. C. Zielinski, and E. Jensen-Jarolim, “Vaccination with cetuximab mimotopes and biological properties of induced anti-epidermal growth factor receptor antibodies,” Journal of the National Cancer Institute, vol. 97, no. 22, pp. 1663–1670, 2005. View at Publisher · View at Google Scholar · View at Scopus