Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 121947, 4 pages
Research Article

ELISA for Aging Biomarkers Induced by Telomere Dysfunction in Human Plasma

1Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
2Institute of Molecular Medicine, Max-Planck-Research Group on Stem Cell Aging, University of Ulm, 89081 Ulm, Germany
3Institute of Laboratory Animal Sciences, Max-Planck-Partner Group on Stem Cell Aging, Chinese Academy of Medical Sciences, Beijing 100864, China

Received 21 May 2010; Revised 30 July 2010; Accepted 28 September 2010

Academic Editor: Manoor Prakash Hande

Copyright © 2010 Hong Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. We identified cathelicidin related antimicrobial protein (CRAMP) secreted from telomere dysfunctional bone marrow cells of late generation telomerase knockout mice (G4mTerc−/−), increased in blood and various tissues. It can represented human aging and disease. The main aim of this study is to investigate the sensitive direct enzyme-linked immunosorbent assay (ELISA) method to analyze the human aging and disease in plasma and the detailed methods to quantify the direct ELISA of these aging biomarkers. Methods. Telomere lengths of 50 healthy persons are measured with real-time PCR in blood cells. Plasma samples from all subjects are analyzed using direct ELISA. Results. From 25 years old person to 78 years, the telomere length becomes shorter during aging. In blood plasma, the expression levels of CRAMP increases during human aging. There is the reverse correspondence between the telomere length and the plasma CRAMP level. We also find that the fresh plasma, the frozen plasma which thawed less than 3 times, and the plasma kept in the room temperature less than 3 hours are better for the ELISA analyze of CRAMP in the plasma. Conclusion. This CRAMP ELISA could become a powerful tool for investigating the relationship between human aging and telomere length shortening.