Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 134764, 9 pages
http://dx.doi.org/10.1155/2010/134764
Research Article

Identification, Characterization, and Effects of Xenopus laevis PNAS-4 Gene on Embryonic Development

1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
2The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotech and Bio-Medicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
3Paul Lauterbur Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Received 15 July 2009; Revised 1 November 2009; Accepted 1 March 2010

Academic Editor: Kenneth L. White

Copyright © 2010 Fei Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. D. Jacobson, M. Weil, and M. C. Raff, “Programmed cell death in animal development,” Cell, vol. 88, no. 3, pp. 347–354, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Coucouvanis and G. R. Martin, “Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo,” Cell, vol. 83, no. 2, pp. 279–287, 1995. View at Google Scholar · View at Scopus
  3. E. J. Sanders and E. Parker, “The role of mitochondria, cytochrome c and caspases-9 in embryonic lens fibre cell denucleation,” Journal of Anatomy, vol. 201, no. 2, pp. 121–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Nakajima, A. Takahashi, and Y. Yaoita, “Structure, expression, and function of the Xenopus laevis caspase family,” Journal of Biological Chemistry, vol. 275, no. 14, pp. 10484–10491, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Hensey and J. Gautier, “A developmental timer that regulates apoptosis at the onset of gastrulation,” Mechanisms of Development, vol. 69, no. 1-2, pp. 183–195, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Yabu, S. Kishi, T. Okazaki, and M. Yamashita, “Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo,” Biochemical Journal, vol. 360, no. 1, pp. 39–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. K. A. Roth and C. D'Sa, “Apoptosis and brain development,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 7, no. 4, pp. 261–266, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. R. E. Poelmann, D. Molin, L. J. Wisse, and A. C. Gittenberger-de Groot, “Apoptosis in cardiac development,” Cell and Tissue Research, vol. 301, no. 1, pp. 43–52, 2000. View at Google Scholar · View at Scopus
  9. L. M. Scavo, R. Ertsey, C. J. Chapin, L. Allen, and J. A. Kitterman, “Apoptosis in the development of rat and human fetal lungs,” American Journal of Respiratory Cell and Molecular Biology, vol. 18, no. 1, pp. 21–31, 1998. View at Google Scholar · View at Scopus
  10. J. Savill, “Apoptosis and the kidney,” Journal of the American Society of Nephrology, vol. 5, no. 1, pp. 12–21, 1994. View at Google Scholar
  11. V. Filippov, M. Filippova, D. Sinha et al., “PNAS-4: a novel pro-apoptotic gene activated during the early response to DNA damage,” Proceedings of the American Association for Cancer Research, vol. 46, p. 717, 2005. View at Google Scholar
  12. F. Yan, L. Gou, J. Yang et al., “A novel pro-apoptosis gene PNAS4 that induces apoptosis in A549 human lung adenocarcinoma cells and inhibits tumor growth in mice,” Biochimie, vol. 91, no. 4, pp. 502–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Yang, Z. Li, H. Deng et al., “Efficient inhibition of ovarian cancer growth and prolonged survival by transfection with a novel pro-apoptotic gene, hPNAS-4, in a mouse model: in vivo and in vitro results,” Oncology, vol. 75, no. 3-4, pp. 137–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Hou, Z. Zhao, F. Yan et al., “Genetic transfer of PNAS-4 induces apoptosis and enhances sensitivity to gemcitabine in lung cancer,” Cell Biology International, vol. 33, no. 3, pp. 276–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus laevis (Daudin), Garland Publishing, New York, NY, USA, 1994.
  16. M. Westerfield, The Zebrafish Book, University of Oregon, Eugene, Ore, USA, 3rd edition, 1995.
  17. C. B. Thompson, “Apoptosis in the pathogenesis and treatment of disease,” Science, vol. 267, no. 5203, pp. 1456–1462, 1995. View at Google Scholar · View at Scopus
  18. T. Bassez, J. Paris, F. Omilli, C. Dorel, and H. B. Osborne, “Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes,” Development, vol. 110, no. 3, pp. 955–962, 1990. View at Google Scholar · View at Scopus
  19. R. M. Harland, “In situ hybridization: an improved whole-mount method for Xenopus embryos,” Methods in Cell Biology, vol. 36, pp. 685–695, 1991. View at Google Scholar · View at Scopus
  20. T. Yabu, S. Todoriki, and M. Yamashita, “Stress-induced apoptosis by heat shock, UV and γ-ray irradiation in zebrafish embryos detected by increased caspase activity and whole-mount TUNEL staining,” Fisheries Science, vol. 67, no. 2, pp. 333–340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Newport and M. Kirschner, “A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage,” Cell, vol. 30, no. 3, pp. 675–686, 1982. View at Google Scholar · View at Scopus
  22. M. Kai, T. Higo, J. Yokoska et al., “Overexpression of S-adenosylmethionine decarboxylase (SAMDC) activates the maternal program of apoptosis shortly after MBT in Xenopus embryos,” International Journal of Developmental Biology, vol. 44, no. 5, pp. 507–510, 2000. View at Google Scholar · View at Scopus
  23. A. D. Carter and J. C. Sible, “Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos,” Mechanisms of Development, vol. 120, no. 3, pp. 315–323, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. A. S. Glass and R. Dahm, “The zebrafish as a model organism for eye development,” Ophthalmic Research, vol. 36, no. 1, pp. 4–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C. B. Thompson, “Apoptosis in the pathogenesis and treatment of disease,” Science, vol. 267, no. 5203, pp. 1456–1462, 1995. View at Google Scholar · View at Scopus
  26. J. Choi and L. A. Donehower, “p53 in embryonic development: maintaining a fine balance,” Cellular and Molecular Life Sciences, vol. 55, no. 1, pp. 38–47, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. L. A. Donehower, M. Harvey, B. L. Slagle et al., “Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours,” Nature, vol. 356, no. 6366, pp. 215–221, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Pan and A. E. Griep, “Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development,” Genes and Development, vol. 8, no. 11, pp. 1285–1299, 1994. View at Google Scholar · View at Scopus
  29. M. B. Reichel, R. R. Ali, F. D'Esposito et al., “High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice,” Cell Death and Differentiation, vol. 5, no. 2, pp. 156–162, 1998. View at Google Scholar · View at Scopus
  30. G. F. Weber and A. S. Menko, “The canonical intrinsic mitochondrial death pathway has a non-apoptotic role in signaling lens cell differentiation,” Journal of Biological Chemistry, vol. 280, no. 23, pp. 22135–22145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Wride, E. Parker, and E. J. Sanders, “Members of the Bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation,” Developmental Biology, vol. 213, no. 1, pp. 142–156, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Yao, L. Xie, M. Qian et al., “Pnas4 is a novel regulator for convergence and extension during vertebrate gastrulation,” FEBS Letters, vol. 582, no. 15, pp. 2325–2332, 2008. View at Publisher · View at Google Scholar · View at Scopus