Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 147835, 8 pages
http://dx.doi.org/10.1155/2010/147835
Research Article

Insulin Promotes Survival of Amyloid-Beta Oligomers Neuroblastoma Damaged Cells via Caspase 9 Inhibition and Hsp70 Upregulation

1Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
2Dipartimento di Chimica e Tecnologie Farmaceutiche, Università di Palermo, Via Archirafi, 36, 90146 Palermo, Italy
3Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy

Received 4 December 2009; Revised 24 February 2010; Accepted 24 February 2010

Academic Editor: George Perry

Copyright © 2010 M. Di Carlo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Wisniewski, J. Ghiso, and B. Frangione, “Biology of Aβ amyloid in Alzheimer's disease,” Neurobiology of Disease, vol. 4, no. 5, pp. 313–328, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annual Review of Biochemistry, vol. 75, pp. 333–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Di Carlo, “Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways,” European Biophysics Journal, vol. 39, pp. 877–888, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. E. Shrimpton, R. L. Schelper, R. P. Linke et al., “A presenilin 1 mutation (L420R) in a family with early onset Alzheimer disease, seizures and cotton wool plaques, but not spastic paraparesis,” Neuropathology, vol. 27, no. 3, pp. 228–232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. P. I. Moreira, A. I. Duarte, M. S. Santos, A. C. Rego, and C. R. Oliveira, “An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 16, no. 4, pp. 741–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Arvanitakis, R. S. Wilson, J. L. Bienias, D. A. Evans, and D. A. Bennett, “Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function,” Archives of Neurology, vol. 61, no. 5, pp. 661–666, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. K. F. Neumann, L. Rojo, L. P. Navarrete, G. Farías, P. Reyes, and R. B. Maccioni, “Insulin resistance and Alzheimer's disease: molecular links & clinical implications,” Current Alzheimer Research, vol. 5, no. 5, pp. 438–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Roriz-Filho, T. M. Sá-Roriz, I. Rosset et al., “(Pre)diabetes, brain aging, and cognition,” Biochimica et Biophysica Acta, vol. 1792, no. 5, pp. 432–443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. E. Tucker , “Diabetes drug appears to slow cognitive decline,” Clinical Psychiatry News, vol. 33, no. 2, p. 42, 2005. View at Google Scholar
  10. A. A. M. Rensink, I. Otte-Höller, R. De Boer et al., “Insulin inhibits amyloid β-induced cell death in cultured human brain pericytes,” Neurobiology of Aging, vol. 25, no. 1, pp. 93–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Takadera, N. Sakura, T. Mohri, and T. Hashimoto, “Toxic effect of a β-amyloid peptide (β22-35) on the hippocampal neuron and its prevention,” Neuroscience Letters, vol. 161, no. 1, pp. 41–44, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Xie, E. Helmerhorst, K. Taddei, B. Plewright, W. Van Bronswijk, and R. Martins, “Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor,” The Journal of Neuroscience, vol. 22, no. 10, article RC221, 2002. View at Google Scholar
  13. W.-Q. Zhao, F. G. De Felice, S. Fernandez et al., “Amyloid beta oligomers induce impairment of neuronal insulin receptors,” FASEB Journal, vol. 22, no. 1, pp. 246–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Carrotta, M. Di Carlo, M. Manno et al., “Toxicity of recombinant β-amyloid prefibrillar oligomers on the morphogenesis of the sea urchin Paracentrotus lividus,” FASEB Journal, vol. 20, no. 11, pp. E1301–E1308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Picone, R. Carrotta, G. Montana, M. R. Nobile, P. L. San Biagio, and M. Di Carlo, “Aβ oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures,” Biophysical Journal, vol. 96, no. 10, pp. 4200–4211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” British Journal of Cancer, vol. 26, no. 4, pp. 239–257, 1972. View at Google Scholar · View at Scopus
  17. J. Magrané, R. C. Smith, K. Walsh, and H. W. Querfurth, “Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed β-amyloid in neurons,” Journal of Neuroscience, vol. 24, no. 7, pp. 1700–1706, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. H. W. Querfurth and F. M. La Ferla, “Alzheimer's disease,” The New England Journal Medicine, vol. 362, no. 4, pp. 329–344, 2010. View at Google Scholar
  19. Z. Kroner, “The relationship between Alzheimer's disease and diabetes: type 3 diabetes?” Alternative Medicine Review, vol. 14, no. 4, pp. 373–379, 2009. View at Google Scholar · View at Scopus
  20. M. M. Pallitto, J. Ghanta, P. Heinzelman, L. L. Kiessling, and R. M. Murphy, “Recognition sequence design for peptidyl modulators of β-amyloid aggregation and toxicity,” Biochemistry, vol. 38, no. 12, pp. 3570–3578, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. Friedlander, “Apoptosis and caspases in neurodegenerative diseases,” The New England Journal of Medicine, vol. 348, no. 14, pp. 1365–1375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Eckert, U. Keil, C. A. Marques et al., “Mitochondrial dysfunction, apoptotic cell death, and Alzheimer's disease,” Biochemical Pharmacology, vol. 66, no. 8, pp. 1627–1634, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Yorek, “The role of oxidative stress in diabetic vascular and neural disease,” Free Radical Research, vol. 37, no. 5, pp. 471–480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. P. I. Moreira, M. S. Santos, C. Sena, R. Seiça, and C. R. Oliveira, “Insulin protects against amyloid β-peptide toxicity in brain mitochondria of diabetic rats,” Neurobiology of Disease, vol. 18, no. 3, pp. 628–637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. A. Bondy and C. M. Cheng, “Signaling by insulin-like growth factor 1 in brain,” European Journal of Pharmacology, vol. 490, no. 1–3, pp. 25–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Song, G. Ouyang, and S. Bao, “The activation of Akt/PKB signaling pathway and cell survival,” Journal of Cellular and Molecular Medicine, vol. 9, no. 1, pp. 59–71, 2005. View at Google Scholar · View at Scopus
  27. H.-K. Lee, P. Kumar, Q. Fu, K. M. Rosen, and H. W. Querfurth, “The insulin/Akt signaling pathway is targeted by intracellular β-amyloid,” Molecular Biology of the Cell, vol. 20, no. 5, pp. 1533–1544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. I. Duarte, P. Santos, C. R. Oliveira, M. S. Santos, and A. C. Rego, “Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3beta signalling pathways and changes in protein expression,” Biochimica et Biophysica Acta, vol. 1783, no. 6, pp. 994–1002, 2008. View at Google Scholar
  29. S. R. Datta, H. Dudek, T. Xu et al., “Akt phosphorylation of BAD couples survival signals to the cell- intrinsic death machinery,” Cell, vol. 91, no. 2, pp. 231–241, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. N. M. Bonini, “Chaperoning brain degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, supplement 4, pp. 16407–16411, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Sakahira, P. Breuer, M. K. Hayer-Hartl, and F. U. Hartl, “Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, supplement 4, pp. 16412–16418, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Bogatch, N. R. Kreisman, and B. S. Beckman, “The heat shock protein 70 (Hsp70)/PI3-K/Akt/HIF/biologic pathway as a putative determinant of hypothermic preconditioning in neuroprotection,” Bioscience Hypotheses, vol. 1, no. 4, pp. 203–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Warrick, H. Y. E. Chan, G. L. Gray-Board, Y. Chai, H. L. Paulson, and N. M. Bonini, “Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70,” Nature Genetics, vol. 23, no. 4, pp. 425–428, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. C. J. Cummings, Y. Sun, P. Opal et al., “Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice,” Human Molecular Genetics, vol. 10, no. 14, pp. 1511–1518, 2001. View at Google Scholar · View at Scopus
  35. J. E. Hamos, B. Oblas, D. Pulaski-Salo, W. J. Welch, D. G. Bole, and D. A. Drachman, “Expression of heat shock proteins in Alzheimer's disease,” Neurology, vol. 41, no. 3, pp. 345–350, 1991. View at Google Scholar · View at Scopus
  36. P. J. Muchowski, G. Schaffar, A. Sittler, E. E. Wanker, M. K. Hayer-Hartl, and F. U. Hartl, “Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 7841–7846, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Dul, D. P. Davis, E. K. Williamson, F. J. Stevens, and Y. Argon, “Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains,” Journal of Cell Biology, vol. 152, no. 4, pp. 705–715, 2001. View at Publisher · View at Google Scholar · View at Scopus